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Introduction

This volume is a sequel to Numerical ranges of operators on

normed spaces and of elements of normed algebras, which is here denoted
by NRI. Although it appeared in 1971, NRI was written in 1969, and since

then the subject has made vigorous progress, reaching a high point withthe

Conference on Numerical Ranges, held in Aberdeen, July 1971. This con-
ference gave us an unusually good opportunity to see the scope of the sub-
ject, which is much less specialized than the title might suggest.

A comparison of the present volume with NRI will show that the
theory of numerical ranges has become immensely richer both in depth
and in width. The contents have been grouped into three chapters:

5. Spatial numerical ranges; 6. Algebra numerical ranges; 7. Further
ranges.

In Chapter 5 we are mainly concerned with the improvement of the
Bishop-Phelps theorem due to Bollobds [115] and with applications of this
useful tool. We also give the remarkable theorem of Zenger [ 78] on the
inclusion of the convex hull of the point spectrum in the spatial numerical
range V(T), and the equally remarkable results of Crabb [136] and Sin-
clair [202] concerning points of Sp(T) n V(T).

NRI contained an inequality (Theorem 4. 8) relating the norms of
iterates to the numerical radius and a remark that this inequality had been
proved to be best possible in a strong sense. Chapter 6 contains a sys-
tematic approach to such best possible inequalities through the theory of
the extremal algebra Ea(K) which has been developed by Bollobas [117]
and Crabb, Duncan, and McGregor [134]. Here the numerical range comes
into contact with interesting function theoretic ideas. Chapter 6 also con-
tains an account of the striking progress made in the study of Hermitian
elements and related concepts by Berkson [109], Browder [125], Berkson,
Dowson and Elliott [113], Moore [186], Sinclair [204], and others. The

proof of the Vidav-Palmer theorem, which bulked large in NRI, receives
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some final touches.

In our final chapter we give a brief survey of essential numerical
ranges, joint numerical ranges, and matrix ranges, and end with an
axiomatic approach to numerical ranges. The theory of the essential
numerical range has been developed with force by Fillmore, Stampfli
and Williams [151], and by Anderson [100] who has established the impor-
tant operator theoretic significance of the condition 0 € Wess(T). Two
concepts of matrix range have been developed, the analogue of the algebra
numerical range by Arveson [104], and the analogue of the spatial numeri-
cal range by S. K. Parrott (unpublished), and both concepts have been
shown to provide complete sets of unitary invariants for certain wide
classes of compact operators.

We are very much aware that our account of numerical ranges
remains unbalanced in that we have not attempted to give an account of
the applications to initial value problems. When we came to study the
literature of this important subject, we soon concluded that we were not
qualified to do it justice, and we hope that some expert in the field will
fill this gap. A valuable bibliography is given in Calvert and Gustafson
[129]. We have also refrained from developing numerical ranges in real
algebras; significant advances in this area may be found in Lumer [176]
and McGregor {180]. The bibliography in NRI lacked an adequate coverage
of numerical ranges for Hilbert space operators and we have attempted to
repair this deficiency in the present volume. The present bibliography
also contains several other items which are not mentioned in the text.

This volume being a companion to NRI, we have continued the same
mode of references. To simplify back references we have numbered the
sections in NRII starting with §15. Likewise the bibliography in NRII
starts with [100], so that [n] with n < 100 refers to the bibliography in
NRI.

Many authors have given us valuable help by making their work
available to us before publication, and we wish to acknowledge particularly
the help received from W. B. Arveson, E. Berkson, B. Bollobis,

A. Browder, M. J. Crabb, H. R. Dowson, K. Gustafson, L. A. Harris,
C. M. McGregor, R. T. Moore, T. W. Palmer, S. K. Parrott,
A. M. Sinclair, and J. P. Williams. As in NRI only a very few results
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appear in print here for the first time. Most of the material in this
volume has been the subject of seminar talks by the authors, and has
benefitted from the resulting criticism. We have had many valuable
conversations with G. A. Johnson which have left their mark particularly
on §§36, 37. In the elimination of errors we have been greatly helped by
D. J. Baker and A. W. Tullo who have read the manuscript.

The whole manuscript has been most expertly typed by Miss
Christine Bourke.

January 1972

University of Edinburgh University of Stirling
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