MODULES OVER ENDOMORPHISM RINGS

This is an extensive synthesis of recent work in the study of endomorphism rings and their modules, bringing together direct sum decompositions of modules, the class number of an algebraic number field, point set topological spaces, and classical noncommutative localization.

The main idea behind the book is to study modules G over a ring R via their endomorphism ring $\text{End}_R(G)$. The author discusses a wealth of results that classify G and $\text{End}_R(G)$ via numerous properties, and in particular results from point set topology are used to provide a complete characterization of the direct sum decomposition properties of G.

For graduate students this is a useful introduction, while the more experienced mathematician will discover that the book contains results that are not otherwise available. Each chapter contains a list of exercises and problems for future research, which provide a springboard for students entering modern professional mathematics.

THEODORE G. FATICONI is Professor in the Mathematics Department at Fordham University, New York.
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM

70 A. Pietsch and J. Wenzel Orthonormal Systems and Banach Space Geometry
71 G. E. Andrews, R. Askey and R. Roy Special Functions
72 R. Ticciati Quantum Field Theory for Mathematicians
73 M. Stern Semimodular Lattices
74 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations I
75 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations II
76 A. A. Ivanov Geometry of Sporadic Groups I
77 A. Schinzel Polynomials with Special Regard to Reducibility
78 T. Beth, D. Jungnickel and H. Lenz Design Theory II, 2nd edn
79 T. W. Palmer Banach Algebras and the General Theory of *-Algebras II
80 O. Storvick Lie’s Structural Approach to PDE Systems
81 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables
82 J. P. Mayberry The Foundations of Mathematics in the Theory of Sets
83 C. Foias, O. Manley, R. Rosa and R. Temam Navier–Stokes Equations and Turbulence
84 B. Bolster and G. Steinke Geometries on Surfaces
85 R. B. Paris and D. Kaminski Asymptotics and Mellin–Barnes Integrals
86 R. McEliece The Theory of Information and Coding, 2nd edn
87 T. W. Palmer An Algebraic Introduction to K-Theory
88 T. Mora Solving Polynomial Equation Systems I
89 K. Bichteler Stochastic Integration with Jumps
90 M. Lothaire Algebraic Combinatorics on Words
91 A. A. Ivanov and S. V. Shpectorov Geometry of Sporadic Groups II
92 P. McMullen and E. Schulte Abstract Regular Polytopes
93 G. Hiertz et al. Continuous Lattices and Domains
94 S. R. Finch Mathematical Constants
95 Y. Jabri The Mountain Pass Theorem
96 G. Gasper and M. Rahman Basic Hypergeometric Series, 2nd edn
97 M. C. Peddie and W. Tholen (eds.) Categorical Foundations
98 M. E. H. Ismail Classical and Quantum Orthogonal Polynomials in One Variable
99 T. Mora Solving Polynomial Equation Systems II
100 E. Olivier and M. Eulàlia Vares Large Deviations and Metastability
101 A. Kushner, V. Lychagina and V. Rubtsov Contact Geometry and Nonlinear Differential Equations
102 L. W. Beineke and R. J. Wilson (eds.) Topics in Algebraic Graph Theory
103 O. Staffans Well-Posed Linear Systems
104 J. M. Lewis, S. Lakshmivarahan and S. K. Dhall Dynamic Data Assimilation
105 M. Lothaire Applied Combinatorics on Words
106 A. Markoe Analytic Tomography
107 P. A. Martin Multiple Scattering
108 R. A. Brualdi Combinatorial Matrix Classes
109 J. M. Borwein and J. D. Vanderwerff Convex Functions
110 M.-J. Lai and L. L. Schumaker Spline Functions on Triangulations
111 R. T. Curtis Symmetric Generation of Groups
112 H. Salzmann, T. Grundhöfer, H. Hähl and R. Löwen The Classical Fields
113 S. Peszat and J. Zabczyk Stochastic Partial Differential Equations with Lévy Noise
114 J. Beck Combinatorial Games
115 L. Barreira and Y. Pesin Nonuniform Hyperbolicity
116 D. Z. Arov and H. Dym J-Contractive Matrix Valued Functions and Related Topics
117 R. Glowinski, J.-L. Lions and J. He Exact and Approximate Controllability for Distributed Parameter Systems
118 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables
119 M. Deza and M. Dutour Sikirić Geometry of Chemical Graphs
120 T. Nishiura Absolute Measurable Spaces
121 M. Prest Purity, Spectra and Localisation
122 S. Khroushchev Orthogonal Polynomials and Continued Fractions: From Euler’s Point of View
123 H. Nagamochi and T. Ibaraki Algorithmic Aspects of Graph Connectivity
124 F. W. King Hilbert Transforms I
125 F. W. King Hilbert Transforms II
126 O. Calin and D.-C. Chang Sub-Riemannian Geometry
127 M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap Aggregation Functions
128 L. W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker Topics in Topological Graph Theory
129 J. Berstel, D. Perrin and C. Reutenauer Codes and Automata
Modules over Endomorphism Rings

THEODORE G. FATICONI
Fordham University
To my wife Barbara Jean
who helped me read our book of life.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>1</td>
<td>Preliminary results</td>
<td>1.1 Rings, modules, and functors</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 Azumaya–Krull–Schmidt theorem</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 The structure of rings</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 The Arnold–Lady theorem</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Class number of an abelian group</td>
<td>2.1 Preliminaries</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2 A functorial bijection</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3 Internal cancellation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4 Power cancellation</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 Unique decomposition</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6 Algebraic number fields</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7 Exercises</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8 Problems for future research</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Mayer–Vietoris sequences</td>
<td>3.1 The sequence of groups</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 Analytic methods</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3 Exercises</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4 Problems for future research</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Lifting units</td>
<td>4.1 Units and sequences</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2 Calculations with primary ideals</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 Quadratic number fields</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4 The Gaussian integers</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5 Imaginary quadratic number fields</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 Exercises</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.7 Problems for future research</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>The conductor</td>
<td>5.1 Introduction</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2 Some functors</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3 Conductor of an endomorphism ring</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.4 Local correspondence</td>
<td>54</td>
</tr>
</tbody>
</table>
5.5 Exercises 60
5.6 Problems for future research 60

6 Conductors and groups 61
6.1 \textit{Rtffr} groups 61
6.2 Direct sum decompositions 63
6.3 Locally semi-perfect rings 67
6.4 Balanced semi-primary groups 70
6.5 Examples 72
6.6 Exercises 75
6.7 Problems for future research 76

7 Invertible fractional ideals 77
7.1 Introduction 77
7.2 Functors and bijections 79
7.3 The square 81
7.4 Isomorphism classes 90
7.5 The equivalence class \{I\} 91
7.6 Commutative domains 93
7.7 Cardinality of the kernels 95
7.8 Relatively prime to \tau 96
7.9 Power cancellation 98
7.10 Algebraic number fields 100
7.11 Exercises 102
7.12 Problems for future research 102

8 \textit{L}-groups 103
8.1 \textit{J}-groups, \textit{L}-groups, and \textit{S}-groups 103
8.2 Eichler groups 103
8.3 Direct sums of \textit{L}-groups 106
8.4 Eichler \textit{L}-groups are \textit{J}-groups 109
8.5 Exercises 111
8.6 Problems for future research 112

9 Modules and homotopy classes 113
9.1 Right endomorphism modules 113
9.1.1 The homotopy of \textit{G}-plexes 113
9.1.2 Homotopy and homology 118
9.1.3 Endomorphism modules as \textit{G}-plexes 120
9.2 Two commutative triangles 128
9.2.1 \textit{G}-Solvable \textit{R}-modules 129
9.2.2 A factorization of the tensor functor 131
9.3 Left endomorphism modules 134
9.3.1 Duality 137
9.4 Self-small self-slender modules 142
9.5 (\mu) Implies slender injectives 143
9.6 Exercises 144
9.7 Problems for future research 146
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Tensor functor equivalences</td>
<td>148</td>
</tr>
<tr>
<td>10.1</td>
<td>Small projective generators</td>
<td>148</td>
</tr>
<tr>
<td>10.2</td>
<td>Quasi-projective modules</td>
<td>153</td>
</tr>
<tr>
<td>10.3</td>
<td>Flat endomorphism modules</td>
<td>157</td>
</tr>
<tr>
<td>10.3.1</td>
<td>A category equivalence for submodules of free modules</td>
<td>157</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Right ideals in endomorphism rings</td>
<td>161</td>
</tr>
<tr>
<td>10.3.3</td>
<td>A criterion for E-flatness</td>
<td>162</td>
</tr>
<tr>
<td>10.4</td>
<td>Orsatti and Menini’s $*$-modules</td>
<td>163</td>
</tr>
<tr>
<td>10.5</td>
<td>Dualities from injective properties</td>
<td>166</td>
</tr>
<tr>
<td>10.5.1</td>
<td>G-Cosolvable R-modules</td>
<td>167</td>
</tr>
<tr>
<td>10.5.2</td>
<td>A factorization of $\text{Hom}_R(\cdot, G)$</td>
<td>168</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Dualities for the dual functor</td>
<td>169</td>
</tr>
<tr>
<td>10.6</td>
<td>Exercises</td>
<td>171</td>
</tr>
<tr>
<td>10.7</td>
<td>Problems for future research</td>
<td>173</td>
</tr>
<tr>
<td>11</td>
<td>Characterizing endomorphisms</td>
<td>175</td>
</tr>
<tr>
<td>11.1</td>
<td>Flat endomorphism modules</td>
<td>175</td>
</tr>
<tr>
<td>11.2</td>
<td>Homological dimension</td>
<td>177</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Definitions and examples</td>
<td>177</td>
</tr>
<tr>
<td>11.2.2</td>
<td>The exact dimension of a G-plex</td>
<td>179</td>
</tr>
<tr>
<td>11.2.3</td>
<td>The projective dimension of a G-plex</td>
<td>180</td>
</tr>
<tr>
<td>11.3</td>
<td>The flat dimension</td>
<td>184</td>
</tr>
<tr>
<td>11.4</td>
<td>Global dimensions</td>
<td>188</td>
</tr>
<tr>
<td>11.5</td>
<td>Small global dimensions</td>
<td>191</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Baer’s lemma</td>
<td>191</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Semi-simple rings</td>
<td>194</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Right hereditary rings</td>
<td>195</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Global dimension at most 3</td>
<td>201</td>
</tr>
<tr>
<td>11.6</td>
<td>Injective dimensions and modules</td>
<td>202</td>
</tr>
<tr>
<td>11.6.1</td>
<td>A review of G-coplexes</td>
<td>202</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Injective endomorphism rings</td>
<td>206</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Left homological dimensions</td>
<td>209</td>
</tr>
<tr>
<td>11.7</td>
<td>A glossary of terms</td>
<td>212</td>
</tr>
<tr>
<td>11.8</td>
<td>Exercises</td>
<td>214</td>
</tr>
<tr>
<td>11.9</td>
<td>Problems for future research</td>
<td>218</td>
</tr>
<tr>
<td>12</td>
<td>Projective modules</td>
<td>219</td>
</tr>
<tr>
<td>12.1</td>
<td>Projectives</td>
<td>219</td>
</tr>
<tr>
<td>12.2</td>
<td>Finitely generated modules</td>
<td>223</td>
</tr>
<tr>
<td>12.3</td>
<td>Exercises</td>
<td>228</td>
</tr>
<tr>
<td>12.4</td>
<td>Problems for future research</td>
<td>228</td>
</tr>
<tr>
<td>13</td>
<td>Finitely generated modules</td>
<td>229</td>
</tr>
<tr>
<td>13.1</td>
<td>Beaumont–Pierce</td>
<td>229</td>
</tr>
<tr>
<td>13.2</td>
<td>Noetherian modules</td>
<td>235</td>
</tr>
<tr>
<td>13.3</td>
<td>Generators</td>
<td>237</td>
</tr>
</tbody>
</table>
13.4 Exercises 241
13.5 Problems for future research 241

14 **Rtffr** E-projective groups 242
14.1 Introduction 242
14.2 The UConn ’81 Theorem 245
14.3 Exercises 248
14.4 Problems for future research 248

15 **Injective endomorphism modules** 249
15.1 G-Monomorphisms 249
15.2 Injective properties 251
15.3 G-Cogenerators 258
15.4 Projective modules revisited 261
15.5 Examples 262
15.6 Exercises 263
15.7 Problems for future research 264

16 **A diagram of categories** 265
16.1 The diagram 265
16.2 Smallness and slenderness 269
16.3 Coherent objects 272
16.4 The construction function 272
16.5 The Greek maps 274
16.6 Applications 275
 16.6.1 Complete sets of invariants 275
 16.6.2 Unique topological decompositions 276
 16.6.3 Homological dimensions 279
16.7 Exercises 282
16.8 Problems for future research 282

17 **Diagrams of abelian groups** 284
17.1 The ring End$_C(X)$ 285
17.2 Topological complexes 286
17.3 Categories of complexes 288
17.4 Commutative triangles 291
17.5 Three diamonds 294
 17.5.1 A diagram for an abelian groups 294
 17.5.2 Self-small and self-slender 296
 17.5.3 Coherent complexes 298
17.6 Prism diagrams 300
17.7 Direct sums 301
17.8 Algebraic number fields 304
17.9 Exercises 309
17.10 Problems for future research 311

18 **Marginal isomorphisms** 312
18.1 Ore localization 312
 18.1.1 Preliminary concepts and examples 313
 18.1.2 Noncommutative localization 315
Contents

18.2 Marginal isomorphisms 322
18.2.1 Margimorphism and localizations 323
18.2.2 Marginal summands 327
18.2.3 Marginal summands as projectives 329
18.2.4 Projective Q_G-modules 331
18.3 Uniqueness of direct summands 333
18.3.1 Totally indecomposable modules 333
18.3.2 Morphisms of totally indecomposables 334
18.3.3 Semi-simple marginal summands 337
18.3.4 Jónsson's theorem and margimorphisms 339
18.4 Nilpotent sets and margimorphism 342
18.5 Isomorphism from margimorphism 346
18.6 Semi-simple endomorphism rings 353
18.7 Exercises 358
18.8 Problems for future research 360

Bibliography
362

Index
368
Preface

The chapters in this book are from papers published or submitted to peer-reviewed journals. These papers were written by the author during the calendar years 2006–2008.

There is a simple example that motivates the point of view of this text. Let k be a field, let V be an n-dimensional k-vector space for some integer $n > 0$, and let $E = \text{Mat}_n(k)$ denote the ring of $n \times n$-matrices over k. Fix an ordered basis β for V and let $[v]_\beta$ denote the vector representation for v relative to β. Given $r \in E$ and $v \in V$ then we define

$$rv = r \cdot [v]_\beta,$$

where \cdot is the usual multiplication between the $n \times n$ matrix r and the column vector $[v]_\beta$. This multiplication makes V a left E-module. Given a right ideal $I \subset E$ we define

$$IV = \left\{ \sum_i r_i v_i \mid \text{finitely many elements } r_i \in I \text{ and } v_i \in V \right\}.$$

Then the assignment

$$I \mapsto IV$$

defines a bijection between the set of right ideals of E and the set of k-subspaces of V. Thus we can study some properties of V by studying the right ideals in the ring E. Notice that we have passed from a strictly additive setting into a setting that is additive and multiplicative. This gain in structure improves our chances of solving certain problems concerning V.

There is little hope of generalizing the bijection $I \mapsto IV$ to more general modules over associative rings without sacrificing something, so we hope for the best possible generalization. To find this generalization we will use elements from ring theory, module theory, and some elementary homology and homotopy theory of complexes over associative rings, and in at least a couple of instances we use some point set topology. More details follow.
Most modern research into direct sum decompositions of reduced torsion-free finite rank abelian groups (now called rtffr groups) begins with a study of projective modules over End(G). This stems from the Arnold–Lady theorem, which shows that direct summands of G^n correspond to projective direct summands of End(G).

This method begins a study of modules G over a ring R and the endomorphism ring End$_R$(G). We begin by constructing a category G-plex of what are called G-plexes. This category is category equivalent to Mod-End$_R$(G), which makes G-plex the category to be studied if we wish to characterize G or End$_R$(G). A duality is used to characterize the rings End$_R$(G) whose properties are on the following list of properties of rings:

1. right or left hereditary
2. right or left Noetherian
3. right or left coherent
4. right or left FP-injective
5. right or left self-injective
6. right or left cogenerator
7. right PF rings
8. QF rings

We consider End$_R$(G) and the left End$_R$(G)-module G, and we characterize several integers associated with rings and modules. Specifically we characterize the integers on the following list:

1. projective dimension of G
2. injective dimension of G
3. flat dimension of G
4. right or left global dimension of End$_R$(G)

Several properties are left as exercises.

One of the purposes of this book is to show that we can study groups locally isomorphic to G by studying invertible fractional right ideals of $E(G)$ where

$$E(G) = \text{End}(G)/N(\text{End}(G)).$$

For example, let $n > 0$ be an integer, and given a commutative prime ring R, let Pic(R) denote the abelian group of isomorphism classes of invertible fractional right ideals of R. If G is a strongly indecomposable rtffr group and if $E(G)$ is commutative then the set of isomorphism classes (H) of groups H that are locally isomorphic to G^n is bijective with the finite abelian group Pic($E(G)$). In this setting we show that if H, K, and L are direct summands of G^n, then cancellation in the isomorphism $H \oplus K \cong H \oplus L$ can be viewed as cancellation of elements in the abelian group Pic($E(G)$).

This point of view gives a new insight into the problem of finding the class number $h(k)$ of the algebraic number field k. For example, those k with $h(k) = 1$ are classified
in the following result. Let \mathbb{E} denote the algebraic integers in k. Let $\Omega(\mathbb{E}) = \{\text{rtffr groups } G \mid \text{End}(G) \cong \mathbb{E}\}$.

Theorem. The following are equivalent for the algebraic number field k.

1. $h(k) = 1$.
2. Each $G \in \Omega(k)$ has the power cancellation property. (For each integer $m > 0$ and group H, $G^m \cong H^m$ implies that $G \cong H$.)
3. Each group H that is locally isomorphic to G is isomorphic to G.

Some research over the thirty-year period from 1970 to 2000 dealt with the rtffr groups G that were finitely generated left $\text{End}(G)$-modules, or projective left $\text{End}(G)$-modules, or that had right hereditary endomorphism ring. Our thirty-odd pages on this type of result give us a unified approach to these problems and extends existing results. Subsequently, we use the machinery developed in Chapter 9 to characterize the left $\text{End}(G)$-module G that possesses some properties from the following list:

1. finitely generated
2. finitely presented
3. coherent
4. projective
5. quasi-projective
6. possesses a projective cover
7. cogenerator
8. generator
9. progenerator
10. quasi-progenerator
11. Noetherian

Let R be an associative ring with identity, let G be a right R-module, and let $\text{End}_R(G)$ denote the ring of R-endomorphisms of G. The module G is *self-small* if for each index set \mathcal{I} and each R-module map $\phi : G \longrightarrow G^{(\mathcal{I})}$ there is a finite set $\mathcal{J} \subset \mathcal{I}$ such that $\phi(G) \subset G^{(\mathcal{J})}$. In other words there is a natural isomorphism

$$\text{Hom}_R(G, G^{(\mathcal{I})}) \longrightarrow \text{Hom}_R(G, G^{(\mathcal{J})}).$$

Let $P(G) = \{\text{right } R\text{-modules } Q \mid Q \oplus Q' \cong G^{(\mathcal{I})} \text{ for some index set } \mathcal{I} \text{ and some right } R\text{-module } Q'\}$. A G-plex is a complex

$$Q = \cdots \longrightarrow Q_3 \xrightarrow{\delta_2} Q_2 \xrightarrow{\delta_1} Q_1 \xrightarrow{\delta_1} Q_0$$
with the properties that

1. $Q_k \in \mathbf{P}(G)$ for each $k \geq 0$ and
2. G has the following lifting property for each $k \geq 1$. Given a map $\phi : G \to Q_k$ such that $\delta_k \phi = 0$ there is a map $\psi : G \to Q_{k+1}$ such that $\phi = \delta_{k+1} \psi$ as in the commutative triangle

$$
\begin{array}{ccc}
Q_{k+1} & \xrightarrow{\delta_{k+1}} & Q_k \\
\downarrow & & \downarrow \psi \\
Q_k & \xrightarrow{\delta_k} & Q_{k-1}
\end{array}
$$

of right R-modules.

The category of G-plexes G-Plex is the additive category whose objects are the G-plexes Q and whose morphisms are homotopy equivalence classes $[f]$ of chain maps

$$f : Q \to Q'$$

between G-plexes Q and Q'.

If we let $\text{Mod-End}_R(G)$ denote the category of right $\text{End}_R(G)$-modules then the functor

$$h_G(\cdot) : G$\text{-Plex} \to \text{Mod-End}_R(G)$$

sends $Q \in G$-Plex to the zeroth homology group of the complex

$$\text{Hom}(G, Q) = \cdots \xrightarrow{\delta^+_2} \text{Hom}_R(G, Q_1) \xrightarrow{\delta^+_1} \text{Hom}_R(G, Q_0),$$

or in other words

$$h_G(Q) = \text{coker} \, \delta^+_1.$$

Theorem. Let G be a self-small right R-module. Then the additive functor

$$h_G(\cdot) : G$\text{-Plex} \to \text{Mod-End}_R(G)$$

is a category equivalence.

Thus the category of right $\text{End}_R(G)$-modules, $\text{Mod-End}_R(G)$, is characterized in terms of a category G-Plex in which G is a small projective generator.
One of the more attractive elements of this point of view is that it dualizes without too much effort. We will assume the set theoretic condition
\[(\mu)\text{ measurable cardinals do not exist.}\]
The assumption \((\mu)\) is true under Gödel’s constructibility hypothesis. Under \((\mu)\) we can make a complete dualization of the above theorem. The right \(R\)-module \(G\) is self-slender if for each index set \(I\) and \(R\)-module map \(\phi : G^I \rightarrow G\) there is a finite set \(J \subset I\) such that
\[G^{I \setminus J} \subset \ker \phi.\]
Equivalently \(G\) is self-slender if for each index set \(I\) the canonical map
\[
\text{Hom}_{R}(G, G)^{(I)} \rightarrow \text{Hom}_{R}(G^I, G)
\]
is an isomorphism. Let
\[
W = W_0 \xrightarrow{\sigma_1} W_1 \xrightarrow{\sigma_2} W_2 \xrightarrow{\sigma_3} \cdots
\]
be a complex of right \(R\)-modules. Then \(W\) is a \(G\)-coplex if \(W_k\) is a direct summand of a direct product of copies of \(G\) for each integer \(k \geq 0\), and if it satisfies the lifting property that is dual to the lifting property satisfied by a \(G\)-plex. Define the category of \(G\)-coplexes, \(G\text{-Coplx}\), to be that category whose objects are \(G\)-coplexes and whose maps are homotopy equivalence classes \([f]\) of chain maps \(f\) between \(G\)-coplexes. The functor
\[
h^G(\cdot) : G\text{-Coplx} \rightarrow \text{End}_{R}(G)\text{-Mod}
\]
is defined by
\[
h^G(W) = \text{coker Hom}_{R}(\partial_1, G)
\]
which is just the zeroth homology group of the complex of left \(\text{End}_{R}(G)\)-modules \(\text{Hom}_{R}(W, G)\).

Theorem. Assume \((\mu)\) and let \(G\) be a self-slender right \(R\)-module. Then the additive functor
\[
h^G(\cdot) : G\text{-Coplx} \rightarrow \text{End}_{R}(G)\text{-Mod}
\]
is a category equivalence.

Consequently, we have characterized the category \(\text{End}_{R}(G)\text{-Mod}\) of \(\text{left \ End}_{R}(G)\)-modules in terms of the category \(G\text{-Coplx}\) in which \(G\) is a slender injective cogenerator. It is worth noting that if \(G\) is a reduced torsion-free finite rank
abelian group then G is both self-small and self-slender. Thus for these groups we have a complete characterization of the right $\text{End}_R(G)$-modules and the left $\text{End}_R(G)$-modules by categories completely determined by G.

From these theorems we sample the existing module theoretic properties for G that can be characterized in terms of $\text{End}_R(G)$, and we look at those properties of $\text{End}_R(G)$ that can be characterized in terms of G. Specifically we characterize the homological dimensions of G as a left $\text{End}_R(G)$-module, we characterize the global dimensions of $\text{End}_R(G)$ in terms of G, and we consider ring theoretic properties for $\text{End}_R(G)$. E.g. we determine when $\text{End}_R(G)$ is left or right Noetherian, left or right coherent, right or left self-injective, a left or right cogenerator ring, a left or right PF ring, a QF ring, or a left or right FP-injective ring. We also characterize those C such that $\text{Hom}_R(G, C)$ is a projective or an injective right $\text{End}_R(G)$-module.

There are a few diagrams that illustrate a connection between G, $\text{End}_R(G)$, homology, and point set topological spaces. This equivalence of ideas from different areas of mathematics is rare. Given a (not necessarily self-small) right R-module G there is a commutative diagram of categories and functors in which M-spaces denotes a category whose objects are point set topological spaces with specified homology groups. It is usual to call a space concentrated at some integer $k \geq 0$ a Moore k-space. Notice that the diagram 16.1 contains the left modules and the right modules over $\text{End}_R(G)$, as well as the functors Tor^* and Ext^*.

Fix G. By letting X denote the topological space whose fundamental group is G, called an Eilenberg–MacLane space, we develop a commutative triangle (see Diagram 17.1) of categories and functors. When G is self-small this triangle consists of category equivalences between homology theory, modules over a ring, and a category of point set topology.
The text ends with a chapter that combines noncommutative localization of rings with an additive functor $QH_G(\cdot)$, and a new measurement of modules called margimorphism to give several right R-modules G possessing unique decompositions. For example, let Q_G denote the semi-primary classical right ring of quotients of the ring $\text{End}_R(G)$. Then G is margimorphic to G' iff $QH_G(G) \cong QH_G(G')$ as right Q_G-modules. Furthermore, we prove that Q_G can be used to find a unique direct sum decomposition for G.

Theorem. Suppose that $\text{End}_R(G)$ possesses a semi-primary classical right ring of quotients Q_G such that $Q_G/I(Q_G)$ is a product of division rings. Then G has a unique direct sum decomposition in the sense of the Azumaya–Krull–Schmidt theorem.

Organization: Aside from a preliminary chapter, the book is in three parts:

1. A portion of the book is devoted to the study of a number-theoretic connection between G and $E(G)$. This includes an investigation into the algebraic number theory of algebraic number fields.
2. A portion of the book is devoted to the study of the module and ideal theoretic connections between G and $\text{End}(G)$.
3. A portion of the book shows a categorical connection between G, $\text{End}(G)$, and certain point set topological spaces.

Chapters 2–7 develop a method for utilizing the commutative property in $E(G)$ in discussing unique direct sum decompositions of G. These techniques characterize the class number of an algebraic number field. Chapter 8 uses analytic number theory to study groups G such that each group locally isomorphic to G is isomorphic to G. Chapter 9 gives the homological framework needed to study $\text{End}(G)$ systematically, including the theorem giving the category equivalence $h_G : G\text{-Plex} \to \text{Mod-End}_R(G)$. Chapter 10 gives several hypotheses under which the tensor functor T_G with G is a category equivalence. In Chapter 11 we describe the ring $\text{End}_R(G)$ with small right or left global dimension. Chapters 12–15 give characterizations of modules of the form $\text{Hom}_R(G, C)$. Chapters 16 and 17 give the diagrams relating abelian groups, modules, $\text{End}_R(G)$, and point set topology. These techniques characterize the class number of an algebraic number field. Chapter 18 is devoted to margimorphisms.
Each chapter ends with a number of exercises and the chapters themselves contain many statements of the type *the reader will prove that* . . . These are details or generalizations that I felt detracted from the discussion. The young ring or module theorist should attempt these exercises. Since examples guide our intuition and guide us to theorems, the reader should not be surprised at the number of examples used to motivate our discussions.

I would like to thank Fordham University for giving me the time and the resources needed to write this book during the years 2002–2007. I would also like to thank my colleagues for carefully reading this book in manuscript form and for their subsequent comments. Their e-mails helped me to polish soft points in the manuscript. I am especially grateful to the faculty and students at New Mexico State University at Las Cruces; to Professors D. Arnold, R. Mines, R. Hunter, E. A. Walker, C. Walker, F. Richman, C. Vinsonhaler, and W. Wickless who brought me to modern ideas for research in endomorphism rings, modules, and abelian groups; and to Professor C. Faith, who introduced me to much of the ring and module theory that the reader will find within.

Since my research style produces many \TeX files and almost no paper files, I am both author and technical typist on this project. Any errors within are my responsibility.