Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 **Introduction**
1.1 Order statistics in wireless system analysis 2
1.2 Diversity, adaptation, and scheduling 3
1.3 Outline of the book 4

2 **Digital communications over fading channels**
2.1 Introduction 7
2.2 Statistical fading channel models 7
2.2.1 Path loss and shadowing 8
2.2.2 Multipath fading 10
2.2.3 Frequency-flat fading 13
2.2.4 Channel correlation 15
2.3 Digital wireless communications 16
2.3.1 Linear bandpass modulation 16
2.3.2 Performance analysis over fading channels 20
2.3.3 Adaptive transmission 23
2.4 Diversity combining techniques 26
2.4.1 Antenna reception diversity 26
2.4.2 Threshold combining and its variants 30
2.4.3 Transmit diversity 35
2.5 Summary 37
2.6 Bibliography notes 38

3 **Distributions of order statistics**
3.1 Introduction 40
3.2 Basic distribution functions 40
3.2.1 Marginal and joint distributions 40
3.2.2 Conditional distributions 41
3.3 Distribution of the partial sum of largest order statistics 42
3.3.1 Exponential special case 43
3.3.2 General case 44
3.4 Joint distributions of partial sums 46
3.4.1 Cases involving all random variables 46
3.4.2 Cases only involving the largest random variables 49
3.5 MGF-based unified analytical framework for joint distributions 53
3.5.1 General steps 54
3.5.2 Illustrative examples 55
3.6 Limiting distributions of extreme order statistics 61
3.7 Summary 63
3.8 Bibliography notes 63

4 Advanced diversity techniques 72
4.1 Introduction 72
4.2 Generalized selection combining (GSC) 72
4.2.1 Statistics of output SNR 73
4.3 GSC with threshold test per branch (T-GSC) 75
4.3.1 Statistics of output SNR 76
4.3.2 Average number of combined paths 78
4.4 Generalized switch and examine combining (GSEC) 78
4.4.1 Statistics of output SNR 80
4.4.2 Average number of path estimations 81
4.4.3 Numerical examples 82
4.5 GSEC with post-examining selection (GSECps) 84
4.5.1 Statistics of output SNR 85
4.5.2 Complexity analysis 89
4.5.3 Numerical examples 90
4.6 Summary 93
4.7 Bibliography notes 93

5 Adaptive transmission and reception 97
5.1 Introduction 97
5.2 Output-threshold MRC 98
5.2.1 Statistics of output SNR 100
5.2.2 Power saving analysis 103
5.3 Minimum selection GSC 104
5.3.1 Mode of operation 105
5.3.2 Statistics of output SNR 106
5.3.3 Complexity savings 113
5.4 Output-threshold GSC 115
5.4.1 Complexity analysis 118
5.4.2 Statistics of output SNR 122
Contents

xi

5.5 Adaptive transmit diversity 127
 5.5.1 Mode of operation 128
 5.5.2 Statistics of received SNR 130
5.6 RAKE finger management over the soft handoff region 135
 5.6.1 Finger management schemes 136
 5.6.2 Statistics of output SNR 137
 5.6.3 Complexity analysis 140
5.7 Joint adaptive modulation and diversity combining 144
 5.7.1 Power-efficient AMDC scheme 146
 5.7.2 Bandwidth-efficient AMDC scheme 148
 5.7.3 Bandwidth-efficient and power-greedy AMDC scheme 150
 5.7.4 Numerical examples 154
5.8 Summary 158
5.9 Bibliography notes 158

6 Multiuser scheduling 162
 6.1 Introduction 162
 6.2 Multiuser diversity 163
 6.2.1 Addressing fairness 164
 6.2.2 Feedback load reduction 166
 6.3 Performance analysis of multiuser selection diversity 168
 6.3.1 Absolute SNR-based scheduling 168
 6.3.2 Normalized SNR-based scheduling 170
 6.4 Multiuser parallel scheduling 171
 6.4.1 Generalized selection multiuser scheduling (GSMuS) 172
 6.4.2 On–off based scheduling (OOBS) 174
 6.4.3 Switched-based scheduling (SBS) 176
 6.4.4 Numerical examples 180
 6.5 Power allocation for SBS 182
 6.5.1 Power reallocation algorithms 183
 6.5.2 Performance analysis 184
 6.5.3 Numerical examples 186
 6.6 Summary 189
 6.7 Bibliography notes 189

7 Multiuser MIMO systems 193
 7.1 Introduction 193
 7.2 Basics of MIMO wireless communications 194
 7.2.1 MIMO channel capacity 194
 7.2.2 Multiuser MIMO systems 196
 7.3 ZFBF-based system with user selection 198
 7.3.1 Zeroforcing beamforming transmission 198
 7.3.2 User selection strategies 200
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.3 Sum-rate analysis</td>
<td>201</td>
</tr>
<tr>
<td>7.3.4 Numerical examples</td>
<td>205</td>
</tr>
<tr>
<td>7.4 RUB-based system with user selection</td>
<td>206</td>
</tr>
<tr>
<td>7.4.1 User selection strategies</td>
<td>208</td>
</tr>
<tr>
<td>7.4.2 Asymptotic analysis for BBSI strategy</td>
<td>209</td>
</tr>
<tr>
<td>7.4.3 Statistics of ordered-beam SINRs</td>
<td>210</td>
</tr>
<tr>
<td>7.4.4 Sum-rate analysis</td>
<td>212</td>
</tr>
<tr>
<td>7.5 RUB with conditional best-beam index feedback</td>
<td>222</td>
</tr>
<tr>
<td>7.5.1 Mode of operation and feedback load analysis</td>
<td>223</td>
</tr>
<tr>
<td>7.5.2 Sum-rate analysis</td>
<td>225</td>
</tr>
<tr>
<td>7.6 RUB performance enhancement with linear combining</td>
<td>229</td>
</tr>
<tr>
<td>7.6.1 System and channel model</td>
<td>231</td>
</tr>
<tr>
<td>7.6.2 M beam feedback strategy</td>
<td>232</td>
</tr>
<tr>
<td>7.6.3 Best-beam feedback strategy</td>
<td>234</td>
</tr>
<tr>
<td>7.7 Summary</td>
<td>241</td>
</tr>
<tr>
<td>7.8 Bibliography notes</td>
<td>241</td>
</tr>
</tbody>
</table>

References
245

Index
255