This modern introduction to seismic data processing in both exploration and global geophysics demonstrates practical applications through real data and tutorial examples. The underlying physics and mathematics of the various seismic analysis methods are presented, giving students an appreciation of their limitations and potential for creating models of the subsurface. Designed for a one-semester course, this textbook discusses key techniques within the context of the world’s ever-increasing need for petroleum and mineral resources – equipping upper undergraduate and graduate students with the tools they need for a career in industry.

Key features
- Examples throughout the texts allow students to compare different data analysis methods and can be demonstrated using the instructor's software of choice.
- Exercises at the end of sections allow the students to check their understanding and put the theory into practice.
- Further reading lists encourage exploration of more advanced and detailed literature relating to topics covered in the book.

Hua-Wei Zhou is Professor and Robert Sheriff Endowed Chair of Applied Seismology at the University of Houston, and has held the position of “Lv-Ka” Scholar at Ocean University of China in Qingdao since 2010. He is one of the few experts in seismic imaging to have done extensive research in both exploration geophysics and solid Earth geophysics, having worked for Exxon Production Research Company as well as having 20 years’ academic teaching experience. He has taught the materials for this book in graduate classes as well as in industry short courses, given in the USA, South Africa, and China.

“This book is a valuable reference for senior undergraduates and graduates in exploration geophysics and seismology. It covers all the common methods and steps of seismic data processing, using clearly presented mathematics. In particular, helpful Boxes in the text enable readers to better understand both basic and crucial information, supported well by the Exercises and Further Reading lists also provided.”
– Jingyi Chen, Decker Dawson Assistant Professor of Geophysics, University of Tulsa
Practical Seismic Data Analysis

HUA-WEI ZHOU
University of Houston
CONTENTS

Preface

1 Introduction to seismic data and processing

1.1 Seismic data and their acquisition, processing, and interpretation
Box 1.1 Why use CMP stacking and what are the assumptions?
1.2 Sampled time series, sampling rate, and aliasing
1.3 Seismic amplitude and gain control
Box 1.2 Comparison between land and marine seismic data
1.4 Phase and Hilbert transforms
Box 1.3 Generalized Hilbert transform and an application
1.5 Data format and quality control (QC)
1.6 Summary
Further reading

2 Preliminary analysis of seismic data

2.1 Pre-processing
2.2 Normal moveout analysis
Box 2.1 Evaluation of NMO stretch
2.3 Convolution and correlation
2.4 Noise suppression methods
2.5 Correction for near-surface statics
Box 2.2 Raypaths of a first arrival
Box 2.3 A synthetic example of wavefield datuming
2.6 Summary
Further reading

3 Discrete spectral analysis

3.1 The law of decomposition and superposition
3.2 Discrete Fourier transform
Box 3.1 An example of discrete Fourier transform
Box 3.2 Assigning coefficients of DFT via bit reverse
3.3 Spectral analysis
Box 3.3 Spectral analysis of the 9/11 disaster events
Box 3.4 Proof of the Wiener–Khinchin theorem
3.4 Seismic wavelets
3.5 Interpolation
3.6 Summary
Further reading

© in this web service Cambridge University Press
www.cambridge.org
Contents

4 Seismic resolution and fidelity

4.1 Vertical and horizontal resolution ... 106
 Box 4.1 Conventional-resolution versus high-resolution seismic data 108
4.2 Resolution versus bandwidth .. 112
 Box 4.2 Hypothetical bandwidth changes in processing 116
4.3 Resolution versus fidelity ... 117
4.4 Practical assessments of resolution and fidelity 122
 Box 4.3 An example of delete-half jackknifing 129
4.5 Correction for seismic attenuation ... 130
4.6 Summary .. 134
Further reading .. 135

5 Digital filters

5.1 Filtering of digital data ... 136
 Box 5.1 Amplitude and phase responses of a Hanning function 141
5.2 Types of filters: pole–zero representation 143
 Box 5.2 Minimum delay interpretation of minimum-phase wavelet 147
5.3 Geophysical models for filtering .. 151
5.4 Frequency–wavenumber \(f-k\) filtering 156
5.5 Inverse filtering ... 159
 Box 5.3 Spectral dominance of the wavelet 161
5.6 Summary .. 170
Further reading .. 171

6 Deconvolution

6.1 Predictive deconvolution .. 172
 Box 6.1 Predictive deconvolution for image enhancement 176
6.2 Frequency domain deconvolution ... 182
6.3 Adaptive deconvolution ... 186
 Box 6.2 Graphic illustration of stationary and non-stationary convolutions 187
6.4 Minimum entropy deconvolution ... 190
6.5 An example of deterministic deconvolution 195
 Box 6.3 Making synthetic seismograms for seismic–well tie 200
6.6 Summary .. 202
Further reading .. 203

7 Practical seismic migration

7.1 Seismic imaging via stacking ... 204
 Box 7.1 An example comparison between time and depth migrations 207
7.2 Kirchhoff integral migration .. 210
 Box 7.2 Spatial aliasing concerns .. 215
7.3 Frequency domain migration ... 219
 Box 7.3 The original 2D synthetic example of Stolt migration 226
7.4 Reverse time migration .. 233
7.5 Practical issues in seismic migration 239
7.6 Summary 246
Further reading 246

8 Practical seismic velocity analysis 247
8.1 Velocity measurements and refraction velocity analysis 248
Box 8.1 Estimate velocities using reduced traveltime versus offset plot 260
8.2 Semblance velocity analysis 265
Box 8.2 Effects of filtering on semblance velocity analysis 267
8.3 Migration velocity analysis 271
8.4 Tomographic velocity analysis 278
Box 8.3 CIG-based multi-scale tomography 289
8.5 Practical issues in tomographic velocity model building 292
8.6 Summary 303
Further reading 304

9 Data fitting and model inversion 305
9.1 Seismic forward modeling 306
Box 9.1 Modeling of multiple reflections in well logs using convolutional modeling 313
9.2 Data fitting via regression 323
9.3 Least squares inversion 333
Box 9.2 The least squares (LS) migration and an approximate solution 336
9.4 Matrix decompositions and generalized inversion 345
9.5 Practical solutions in geophysical inversion 354
Box 9.3 Challenge of low-velocity layers to first-arrival tomography: the Yilmaz model 366
9.6 Summary 374
Further reading 375

10 Special topics in seismic processing 376
10.1 Some processing issues in seismic data acquisition 377
Box 10.1 Ambient-noise seismology 383
10.2 Suppression of multiple reflections 393
10.3 Processing for seismic velocity anisotropy 407
Box 10.2 Sensitivity of traveltime to anisotropic parameters 419
10.4 Multi-component seismic data processing 422
Box 10.3 Multi-component versus dense single-component surveys 438
10.5 Processing for seismic attributes 438
10.6 Summary 463
Further reading 464

References 465
Index 477

Color plate section is found between pp. 246 and 247
Seismic data analysis transfers seismic records measured at the surface or along wellbores into imagery, estimates, and models of subsurface structures and properties. It covers the topics of digital seismic data processing, seismic migration, and subsurface model building that are useful in both exploration geophysics and solid Earth geophysics. Although several excellent books have covered these topics either from the viewpoint of exploration geophysics or that of solid Earth geophysics, I was motivated to write this book to deal with common seismic analysis methods for both aspects of geophysics. This book is intended as an introductory text on common and practical methods in seismic data analysis.

Most of the materials for this book originated as lecture notes for graduate courses in geophysics at University of Houston and Texas Tech University. Students on these courses usually have a variety of backgrounds: many are recent graduates from geophysics, geology, engineering, computer sciences, or other physical science disciplines, and others are employees in the petroleum industry. They intend to apply seismic data analysis skills to problems in exploration geophysics, solid Earth geophysics, and engineering and environmental sciences. Although they may have access to some commercial or free software in seismic processing, most of these students have not gone through a systematic review of common approaches to seismic data analysis and the practical limitations of each method. Hence, an effort has been made in this book to emphasize the concepts and practicality of common seismic analysis methods using tutorial and case examples or schematic plots.

The first six chapters of the book prepare the background and deal mostly with time processing. Chapter 1 introduces seismic data and issues of sampling, amplitude, and phase. Chapter 2 addresses pre-processing of reflection seismic data using examples on normal moveout (NMO) analysis, noise suppression, and near-surface statics. The topics of discrete Fourier transform and wavelet transfer are both discussed in Chapter 3 in terms of the law of decomposition and superposition. Chapter 4 is devoted to the meaning and assessment of seismic resolution and fidelity. Chapter 5 discusses filtering of time series using z-transform and Fourier transform methods. Chapter 6 covers several common deconvolution methods.

Each of the final four chapters may be studied independently: Chapters 7 to 9 are on three main branches of seismic data analysis, and Chapter 10 covers several special topics. Chapter 7 introduces several seismic migration methods that have served as the main subsurface seismic imaging tools in exploration geophysics. Chapter 8 is on seismic velocity analysis using semblance, migration, and tomography. Chapter 9 discusses the basic issues and relationship between seismic modeling and inversion. Chapter 10 addresses processing issues in topics of seismic data acquisition, suppressing of multiple reflections, seismic velocity anisotropy, multi-component seismic data, and seismic attributes.

Each chapter starts with an overview paragraph describing the sections to follow. Terms defined are indicated by bold font. For students, it is especially important to comprehend the meaning of common terms and concepts in the field because this often reflects the depth of their understanding. A large number of figures are given that illustrate concepts or...
Preface

Applications. Several boxes are provided in each chapter to examine specific case studies or ideas. There is an exercise at the end of each main section. Each chapter ends with a summary of key concepts, and a list of further reading. All serious learners should read several technical papers from the suggested reading lists, to draw connections between the issues covered by the chapter and the reference papers.

The mathematical content has been kept to a minimum, although I assume that readers are comfortable with basic calculus and linear algebra including matrices. Most parts of the book should be readable by those with an undergraduate degree in physical science or engineering. Readers without much mathematical training should focus on the main concepts and physical meanings.

This book could not have been completed without the encouragement of Dr. Robert E. Sheriff, my colleague and mentor. I would like to thank my fellow geophysicists for granting permission to reproduce figures from their publications. I acknowledge the assistance of many people in the preparation of this book, especially those students who provided feedback. I particularly thank Kurt Marfurt, Oong Youn, Mike Thornton, Zhihui Zou, Fang Yuan, and Wendy Zhang. This book is dedicated to my parents.

Hua-Wei Zhou