
1 Laws of thermodynamics

1.1 First and second laws of thermodynamics

Thermodynamics is a science concerning the state of a system when interacting with the
surroundings; it is based on two laws of nature, the first and second laws of thermodynam-
ics. The interactions can involve exchanges of any combinations of heat, work, and mass
between the system and the surroundings, dictated by the boundary conditions between
the system and the surroundings. The first law of thermodynamics describes those
interactions, while the second law of thermodynamics governs the evolution of the state
inside the system. Consequently, the combination of the first and second laws of
thermodynamics provides an integration of the external and internal parts of a system.

A system typically consists of many chemical components. The first law of thermo-
dynamics states that the exchanges of heat, work, and individual components with the
surroundings must obey the law of conservation of energy. In the domain of materials
science and engineering, the energy of interest is at the atomic and molecular levels. The
energies at higher and lower levels such as nuclear energy and the kinetic and potential
energies of a rigid body are usually excluded from the discussion of the thermodynam-
ics of materials.

Let us consider a system receiving an amount of heat, dQ, an amount of work, dW,
and an amount of each independent component i, dNi, from the surroundings. Such a
system is called an open system in contrast to a closed system when dNi = 0 for all
components, i.e. there is no exchange of mass between the system and the surroundings.
Other types of systems commonly defined in thermodynamics include adiabatic
systems, those without exchange of heat, i.e. dQ = 0, and isolated systems, those
without exchange of any kind, i.e. dQ = dW = dNi = 0.

The corresponding change of energy in the system, i.e. the internal energy change,
dU, is formulated in terms of the first law of thermodynamics as follows,

dU ¼ dQþ dW þ
X

HidNi 1.1

where Hi is the unit energy of component i in the surroundings, and the summation is
for all components in the system which can be controlled independently from the
surroundings, i.e. the independent components of the system.

It is self-evident that the left-hand side of Eq. 1.1 refers to the change inside the
system, while its right-hand side is for the contributions from the surroundings to the
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system. In principle, no matter how the heat and mass are added, or how work is done
to the system, as long as their summation is the same the change of the internal energy
from the first law of thermodynamics will be the same, indicating that for a closed
system the system always reaches the same state. The internal energy is thus a state
function in a closed system as it does not depend on how the state is reached.

On the other hand, for the purpose of easy mathematical treatment, a reversible
process can be considered for a closed system, in which the initial state of the system
can be restored reversibly without any net change in the surroundings. Therefore, the
heat transferred and the work done to the system are identical to the heat and work lost
by the surroundings and vice versa. The classic example of reversible processes is the
Carnot cycle, which is shown in Figure 1.1. It consists of four reversible processes for a
closed system. The four reversible processes are compression at constant temperature T1
(isothermal), compression without heat exchange (adiabatic) ending at T2, isothermal
expansion at T2, and adiabatic expansion ending at T1.

The Carnot cycle involves a simple type of mechanical work, either hydrostatic
expansion or compression, with the work that the surroundings does to the system
represented by

dW ¼ �PdV 1.2

with P being the external pressure that the surroundings exerts on the system and V the
volume of the system. It is now necessary to differentiate the external and internal
variables for further discussion, with the former representing variables in the surround-
ings and the latter representing variables in the system. For the isothermal processes in
the Carnot cycle, the entropy change of the system, dS, can be defined as the heat
exchange divided by temperature:

dS ¼ dQ

T
1.3

In addition to processes involving heat, work, and mass exchanges between the system
and the surroundings, there can be internal processes taking place inside the system. As
the system cannot do work to itself, the criterion for whether an internal process can
occur spontaneously must be related to the heat exchange, which is related to the
entropy change as shown by Eq. 1.3.
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Figure 1.1 Schematic diagram of the Carnot cycle, from [1] with permission from Cambridge
University Press.
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It is a known fact that heat will spontaneously transfer from a higher temperature (T2)
region to a lower temperature (T1) region inside a system if heat conduction is allowed,
and this process is irreversible because heat cannot be conducted from a low tempera-
ture region to a high temperature region spontaneously. Equation 1.3 indicates that for
the same amount of heat change, the entropy change at T1 is higher than that at T2, and
the heat conduction thus results in a positive entropy change in the system, i.e.

ΔS ¼ � dQ

T2
þ dQ

T1
¼ dQ

T2T1
T2 � T1ð Þ > 0 1.4

Consequently, the second law of thermodynamics is obtained, which states that for an
internal process to take place spontaneously, or irreversibly, this internal process (ip)
must have positive entropy production, which can be written in differential form as
follows:

dipS > 0 1.5

From the definition of entropy change shown by Eq. 1.3, the amount of heat produced
by this irreversible internal process can be calculated as follows:

dipQ ¼ TdipS 1.6

Let us represent this internal process by dξ and define the driving force for the internal
process by D. The work done by this internal process is thus Ddξ, which is released as
heat, i.e.

Ddξ ¼ dipQ ¼ TdipS 1.7

An irreversible process thus must have a positive driving force in order for it to take
place spontaneously.

1.2 Combined law of thermodynamics and equilibrium conditions

For a system with an irreversible internal process taking place, the entropy change in the
system consists of three parts: the heat exchange with the surroundings, defined by
Eq. 1.3, the entropy production due to the internal process, represented by Eq. 1.5, and
the entropy of mass exchange with the surroundings. The total entropy change of the
system can thus be written as follows:

dS ¼ dQ

T
þ dipSþ

X
SidNi 1.8

where Si is the unit entropy of component i in the surroundings, often called the partial
entropy of component i, which will be further discussed in Chapter 2.

Combining Eq. 1.7 and Eq. 1.8 and re-arranging, one obtains

dQ ¼ TdS� Ddξ �
X

TSidNi 1.9

31.2 Law of thermodynamics and equilibrium conditions
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Inserting Eq. 1.2 and Eq. 1.9 into Eq. 1.1 yields the combined law of thermodynamics
from the first and second laws of thermodynamics,

dU ¼ TdS� PdV þ
X

Hi � TSið ÞdNi � Ddξ 1.10

The internal energy of the system is thus a function of the variables S, V, Ni and ξ of the
system, which are called natural variables of the internal energy, i.e. U(S,V,Ni,ξ). The
other variables are dependent variables and can be represented by partial derivatives of
the internal energy with respect to their respective natural variables with other natural
variables kept constant, as shown below:

T ¼ ∂U
∂S

� �
V ,Ni,ξ

1.11

�P ¼ ∂U
∂V

� �
S,Ni, ξ

1.12

μi ¼ Hi � TSi ¼ ∂U
∂Ni

� �
S,V ,Nj6¼i,ξ

¼ Ui 1.13

�D ¼ ∂U
∂ξ

� �
S,V ,Ni

1.14

In Eq. 1.13, a new variable, μi, is introduced. This is called the chemical potential and is
defined as the internal energy change with respect to the addition of the component i
when the entropy, volume, and the amount of other components of the system are kept
constant. It may be worth pointing out that for a system at equilibrium, i.e. dipS ¼ 0, and
with constant entropy, dS ¼ 0, if the system exchanges mass with the surroundings,
dNi 6¼ 0, then it must also exchange heat with the surroundings at the same time in
order to keep the entropy invariant as demonstrated by Eq. 1.8.

The pairs of natural variables and their corresponding partial derivatives are called
conjugate variables, i.e. S and T, V and –P, Ni and μi, and ξ and –D. There are minus
signs in front of P and D as the increase of volume and the progress of the internal
process decrease the internal energy of the system. The importance of this conjugate
relation will be evident when various forms of combined thermodynamic laws and
various types of phase diagrams are introduced.

The last pair of conjugate variables, ξ and –D, is worthy of further discussion. Based on
the second law of thermodynamics, i.e. Eq. 1.5, no internal processes take place sponta-
neously if there is no entropy production, i.e. D � 0 or dξ = 0 and D > 0. With D � 0,
there is no driver for any internal processes, and the system is in a full equilibrium state.
The last term in Eq. 1.10 drops off, and ξ becomes a dependent variable of the system and
can be calculated from the equilibrium conditions. With dξ = 0 and D > 0, the system
is under a constrained equilibrium or freezing-in condition when the internal process is
constrained not to take place, and ξ remains an independent variable of the system.

These two cases represent the two branches of thermodynamics: equilibrium,
i.e. reversible, thermodynamics and irreversible thermodynamics. It is clear from the above
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discussions that these two branches are identical if the internal energy is not only a function
of S, V, and Ni, but is also a function of any internal process variable ξ. This means that
one should be able to evaluate the internal energy of a system for any freezing-in equili-
brium conditions in addition to the full equilibrium conditions. In the rest of the book,
freezing-in equilibrium and full equilibrium are not differentiated unless specified.

As the mechanical work under hydrostatic pressure is very important in experiments,
let us define a new quantity called the enthalpy as follows:

H ¼ U þ PV 1.15

Its differential form can be obtained from Eq. 1.1 as

dH ¼ dU þ d PVð Þ ¼ dQþ VdPþ
X

Hi dNi 1.16

There are two significant consequences of the above equation. First, for a closed system
under constant pressure, i.e. dNi ¼ dP ¼ 0, one has dH ¼ dQ. This implies that the
enthalpy change in a system is equal to the heat exchange between the system and
the surroundings of the system, which is why enthalpy and heat are often used
exchangeably in the literature. Second, for an adiabatic system under constant pressure,
i.e. dQ ¼ dP ¼ 0, Eq. 1.16 can be re-arranged to the following equation:

Hi ¼ ∂H
∂Ni

� �
Nj 6¼i,dQ¼dP¼0

1.17

The quantity Hi is thus the partial enthalpy of component i and will be further discussed
in Chapter 2. The chemical potential of component i defined in Eq. 1.13 is thus related
to the partial enthalpy and partial entropy of the component.

To further define the equilibrium conditions of a system, consider a homogeneous
system in a state of internal equilibrium, i.e. no spontaneous internal processes are
possible with Ddξ ¼ 0 and Eq. 1.10 becomes

dU ¼ TdS� PdV þ
X

μidNi ¼
X

YidXi 1.18

where X represents S, V, Ni, and Y represents their conjugate variables T, �P, μi.
The state of the system with c independent components is completely determined by
cþ 2 variables, i.e. S, V, and Ni with i ranging from 1 to c.

To simplify the situation, let us limit the discussion to an isolated equilibrium system,
i.e. dU ¼ 0, and conduct a virtual internal experiment inside the system by moving an
infinitesimal amount of Xi, dXi, with other Xj kept constant, from one region of the
system to another region of the system as schematically shown in Figure 1.2.

dXi

System Surroundings

Figure 1.2 Virtual experiment for a system at equilibrium.
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As the system is homogeneous and at equilibrium, �dX0
i ¼ dX00

i ¼ dXi. The total
change of the internal energy for this internal process is the combination of the changes
in the two regions, i.e.

dU ¼ dU0 þ dU00 ¼ Y 0
idX

0
i þ Y 00

i dX
00
i ¼ �Y 0

i þ Y 00
i

� �
dXi ¼ 0 1.19

Therefore, Y 0
i ¼ Y 00

i for T, �P, and μi, indicating that T, �P, and μi are homo-
geneous in the system, respectively, and are thus named as potentials of the
system. Furthermore, these potentials are independent of the size of the system
and are often referred to as intensive variables in the literature. On the other hand,
all X, i.e. S, V, and Ni, are proportional to the size of the system and can be
normalized with respect to the size of the system, usually in terms of the total
number of moles,

N ¼
X

Ni 1.20

They are thus called molar quantities and are often referred to as extensive variables,
and the respective normalized variables are molar entropy, molar volume, and mole
fractions, defined as follows:

Sm ¼ S

N
1.21

Vm ¼ V

N
1.22

xi ¼ Ni

N
1.23

Consider a small subsystem in this homogeneous system at equilibrium and let the
subsystem grow in size. The entropy, volume, and mass enclosed in the subsystem
increase as follows:

dS ¼ SmdN 1.24

dV ¼ VmdN 1.25

dNi ¼ xidN 1.26

The corresponding change in the internal energy of the subsystem becomes

dU ¼ TdS� PdV þ
X

μidNi ¼ TSm � PVm þ
X

μixi
� �

dN ¼ UmdN 1.27

By integration one obtains the integral form of the internal energy as

U ¼ TSm � PVm þ
X

μixi
� �

N ¼ UmN ¼ TS� PV þ
X

μiNi 1.28

Similarly, the molar enthalpy can be defined as follows:

H ¼ U þ PV ¼ UmN þ PVmN ¼ Um þ PVmð ÞN ¼ HmN 1.29

6 Laws of thermodynamics
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In the case when a potential is not homogeneous in a system, the system will not be
in a state of equilibrium. Let us consider the same virtual experiment as shown in
Figure 1.2 for an isolated system that is not in equilibrium, i.e. by moving an infinite-
simal amount of Xi, dXi, with other Xj kept constant, from one region of the system
to another region of the system with the two regions having different potentials. The
total internal energy change is equal to zero as the virtual experiment has dU ¼ 0.
Similarly, each region can be considered to be homogeneous by itself, and one has
�dX0

i ¼ dX00
i ¼ dXi. The total internal energy change in the system is thus the sum

of that for these two regions plus the entropy production due to the internal process
with dξ ¼ dXi, i.e.

dU ¼ dU0 þ dU00 þ Ddξ ¼ Y 0
idX

0
i þ Y 00

i dX
00
i þ Ddξ ¼ �Y 0

i þ Y 00
i

� �
dXi þ Ddξ ¼ 0

1.30

Consequently, one obtains the following:

D ¼ Y 0
i � Y 00

i 1.31

The driving force thus represents the difference of the potential at the two regions, and
the internal process acts to eliminate inhomogeneity of the potential by means of heat
transfer from high temperature regions to low temperature regions, or volume shrinkage
of low pressure regions (high �P) and volume expansion of high pressure regions
(low �P), and/or the transport of components from high chemical potential regions to
low chemical potential regions.

1.3 Stability at equilibrium and property anomaly

As shown by Eq. 1.19, potentials are homogenous for a homogeneous system in a state
of internal equilibrium. To study the stability of the equilibrium state, one considers the
entropy production due to a fluctuation of a molar quantity as an internal process. Based
on the second law of thermodynamics, the driving force, as the first derivative of the
entropy production with respect to the internal process, is zero for such a fluctuation at
equilibrium, i.e. D ¼ 0, and the entropy of production thus depends on the second
derivative. It can be written as follows in terms of Taylor expansion:

TdipS ¼ ∂ipS
∂ξ

dξ þ 1
2

∂2ipS

∂ξ2
dξð Þ2 ¼ Ddξ � 1

2
D2 dξð Þ2 1.32

with D2 ¼ �∂2ipS=∂ξ2 . When ∂2ipS=∂ξ2 < 0 or D2 > 0 along with D ¼ 0, the fluctu-
ation does not produce positive entropy of production and thus cannot develop
further. The equilibrium state of the system is therefore stable against the fluctuation.
On the other hand, when ∂2ipS=∂ξ2 > 0 or D2 < 0 along with D ¼ 0, the fluctuation
creates positive entropy of production and can continue to grow. The equilibrium
state of the system is therefore unstable against the fluctuation. In connection with
Eq. 1.8, one can realize that for a system at stable equilibrium without heat and mass

71.3 Stability at equilibrium and property anomaly
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exchange with the surroundings, its entropy is at its maximum and there are no other
internal processes which could produce any more entropy. This is schematically
shown in Figure 1.3.

Using Eq. 1.10, Eq. 1.18, and Eq. 1.32, the combined law of thermodynamics can be
written as

dU ¼
X

YidXi � Ddξ þ 1
2
D2 dξð Þ2 1.33

Let us carry out the same virtual internal experiment as in Section 1.2, i.e. moving an
infinitesimal amount of Xi in an isolated homogenous system with the other Xj

kept constant, i.e. dU ¼ 0 and D ¼ 0. The internal energy change due to this internal
process is

dU ¼ 1
2
D2 dX0

i

� �2 þ dX00
i

� �2n o
1.34

For a homogeneous system in a state of stable equilibrium with dX0
i

� �2 ¼
dX00

i

� �2 ¼ dXið Þ2, this internal process must result in an increase of internal energy,
dU > 0, and thus gives

D2 ¼ 2
∂2U

∂Xi
2

� �
Xj

¼ 2
∂Yi

∂Xi

� �
Xj

> 0 1.35

Equation 1.35 shows that for a system to be stable, any pair of conjugate variables must
change in the same direction when other independent molar quantities are kept constant.
For the conjugate variables discussed so far, this means that for a stable system, the
addition of entropy increases with temperature if ∂T=∂S > 0, the volume decreases with
pressure or increases with the negative of pressure if ∂ �Pð Þ=∂V > 0, and the chemical

z

DipS

Figure 1.3 Schematic diagram showing maximum entropy, from [1] with permission from
Cambridge University Press.
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potential of a component increases with the amount of the component, i.e. ∂μi=∂Ni
> 0,

where the derivatives are taken with all other molar quantities kept constant. The limit
of stability is reached when Eq. 1.35 becomes zero, i.e.

D2 ¼ 2
∂Yi

∂Xi

� �
Xj

¼ 0 1.36

Figure 1.4 shows schematically the energy as a function of configuration includ-
ing three states: unstable, stable, and metastable. Both the stable and metastable
states have positive curvatures due to D2 > 0, while the unstable state has a
negative curvature due to D2 < 0. There is an inflection point, at which D2 ¼ 0,
for a state between a stable or metastable state with D2 > 0 and an unstable state
with D2 < 0. These two inflection points, called spinodal, represent the limit of
stability. The states between the two inflection points are unstable, and the other
states are either stable or metastable. The two inflection points can move apart from
or close to each other depending on the change of external conditions, i.e. the
natural variables. One extreme situation is when these two inflection points merge
into one point, and the instability occurs only at this particular point. It is evident
that then all three states, stable, metastable, and unstable, also merge into one point.
This point is called the critical or consolute point, beyond which the instability no
longer exists.

To mathematically define the consolute point, the third derivative needs to be added
to Eq. 1.32 because both D and D2 vanish at this point, i.e.

TdipS ¼ ∂ipS
∂ξ

dξ þ 1
2

∂2ipS

∂ξ2
dξð Þ2 þ 1

6

∂3ipS

∂ξ3
dξð Þ3 ¼ Ddξ � 1

2
D2 dξð Þ2 þ 1

6
D3 dξð Þ3 1.37

dU ¼
X

YidXi � Ddξ þ 1
2
D2 dξð Þ2 � 1

6
D3 dξð Þ3 1.38

At the consolute point, the third derivative also becomes zero, i.e.

D3 ¼
∂3ipS

∂ξ3
¼ 0 1.39

E
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Spinodal

Figure 1.4 Schematic diagram showing the metastable (A), unstable (B), and stable (C)
equilibrium states.

91.3 Stability at equilibrium and property anomaly

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19896-7 - Computational Thermodynamics of Materials
Zi-Kui Liu and Yi Wang
Excerpt
More information

http://www.cambridge.org/9780521198967
http://www.cambridge.org
http://www.cambridge.org


Let us further discuss the properties of the system in relation to the critical point.
By taking the inverse of the equation for the limit of stability, Eq. 1.36, one obtains

∂Xi

∂Yi

� �
Xj

¼ þ∞ 1.40

i.e. all Xi quantities diverge at the critical point. Therefore, when a system approaches the
critical point from its stable region, the change of a molar quantity with respect to
its conjugate potential varies dramatically and becomes infinite at the critical point,
resulting in property anomalies in the system. In the unstable region, the system will thus
separate into stable subsystems and become heterogeneous, and the Xi will change
discontinuously between subsystems. In the stable region, the change of a molar quantity
with respect to its conjugate potential decreases as the system moves away from the
critical point and remains positive due to the stability criterion denoted by Eq. 1.35.

However, it is not clear how a molar quantity changes with respect to a non-conjugate
potential at the critical point. From the Maxwell relation, one has

∂Yi

∂Xj

� �
Xk 6¼j

¼ ∂2U
∂Xi∂Xj

¼ ∂Yj

∂Xi

� �
Xk 6¼i

1.41

∂Xj

∂Yi

� �
Xk 6¼j

¼ ∂Xi

∂Yj

� �
Xk 6¼i

1.42

Since all the Xi diverge at the critical point, both derivatives in Eq. 1.42 should also go
to infinity at the critical point. To investigate their signs, let us carry out a virtual
experiment similar to that used to derive the stability condition (Eq. 1.34 and Eq. 1.35).
In this case, two internal processes are needed for moving two molar quantities
simultaneously in an isolated system, i.e.

dU ¼ �Dξ1dξ1 � Dξ2dξ2 þ Dξ1ξ2dξ1dξ2 þ
1
2
D2ξ1 dξ1ð Þ2 þ 1

2
D2ξ2 dξ2ð Þ2 1.43

Based on the above discussions, in a stable system at equilibrium with Dξ1 ¼ Dξ2 ¼ 0,
D2ξ1 > 0, and D2ξ2 > 0, the sign of Dξ1ξ2 cannot be unambiguously determined when
keeping the change of internal energy positive, i.e. dU > 0. This indicates that the
quantities in Eq. 1.41 can be either positive or negative in the stable region and become
zero at the critical point. By the same token, the quantities in Eq. 1.42 can be either
positive or negative and become either positive or negative infinity at the critical point.

A profound conclusion from this analysis is that in a stable system, even though a
molar quantity always changes in the same direction as its conjugate potential, the same
molar quantity may change in the opposite direction to a non-conjugate potential,
resulting in additional anomalies represented by Eq. 1.40. One example of Eq. 1.42 is
the thermal expansion in a closed system, i.e. dNi ¼ 0, as follows

∂V
∂T

� �
S

¼ ∂S
∂ �Pð Þ

� �
V

1.44

The left-hand side of Eq. 1.44 can be understood as follows: with the increase of
temperature, the system regulates its pressure in order to keep the entropy from

10 Laws of thermodynamics
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