Economic Growth in Europe

Why has European growth slowed down since the 1990s while American productivity growth has speeded up? This book provides a thorough and detailed analysis of the sources of growth from a comparative industry perspective. It argues that Europe’s slow growth is the combined result of a severe productivity slowdown in traditional manufacturing and other goods production, and a concomitant failure to invest in and reap the benefits from Information and Communications Technology (ICT), in particular in market services. The analysis is based on rich new databases including the EU KLEMS growth accounting database and provides detailed background of the data construction. As such, the book provides new methodological perspectives and serves as a primer on the use of data in economic growth analysis. More generally, it illustrates to the research and policy community the benefits of analysis based on detailed data on the sources of economic growth.

MARCEL P. TIMMER is Professor of Economic Growth and Development and Director of the Groningen Growth and Development Centre (GGDC) at the University of Groningen.

ROBERT INKLAAR is Assistant Professor in the Department of International Economics and Business at the University of Groningen.

MARY O’MAHONY is Professor of International Industrial Economics at Birmingham Business School at the University of Birmingham.

BART VAN ARK is Chief Economist of the Conference Board, New York, and Professor of Economic Development, Technological Change and Growth at the University of Groningen.
Economic Growth in Europe

A Comparative Industry Perspective

MARCEL P. TIMMER
ROBERT INKLAAR
MARY O’MAHONY
BART VAN ARK
Contents

List of figures page vii
List of tables x
Preface and acknowledgements xiii

1 Introduction and overview
1.1 Introduction 1
1.2 Perspectives on Europe’s falling behind 3
1.3 Growth accounting 5
1.4 Book summary and contribution 9
1.5 Concluding remarks 16

2 Economic growth in Europe 18
2.1 Introduction 18
2.2 European and US productivity growth since 1950 19
2.3 Growth accounting for Europe and the United States 24
2.4 Structural change and the European slowdown 30
2.5 Market services and the growing EU–US gap 34
2.6 Increasing European diversity 38
2.7 Concluding remarks 44

3 EU KLEMS database 46
3.1 Introduction 46
3.2 Growth accounting methodology 47
3.3 Output and intermediate inputs 60
3.4 Labour services 63
3.5 Capital services 69
3.6 Issues in measuring outputs, inputs and productivity 78
3.7 Measurement issues in market services 90
3.8 Comparisons with alternative measures 100
3.9 Concluding remarks 106

Appendix The EU KLEMS database: contents of the March 2008 version 107
Contents

4 Structural change
 4.1 Introduction 129
 4.2 Trends in output and employment 132
 4.3 Trends in productivity 136
 4.4 Growing role of skills and ICT capital 140
 4.5 Concluding remarks 150

5 The industry origins of aggregate growth
 5.1 Introduction 152
 5.2 Methodology: industry contributions to growth 152
 5.3 Labour productivity growth 156
 5.4 Capital and labour input growth 161
 5.5 Multi-factor productivity growth 172
 5.6 Patterns of growth: yeast versus mushrooms 177
 5.7 Concluding remarks 183
 Appendix 187

6 Productivity levels and convergence
 6.1 Introduction 189
 6.2 Level accounting methodology 191
 6.3 Basic data for productivity level comparisons 201
 6.4 Productivity levels: crude versus data-intensive measures 210
 6.5 Reliability of level estimates 219
 6.6 Productivity gaps and accounts 226
 6.7 Convergence analysis 237
 6.8 Determinants of productivity growth 241
 6.9 Concluding remarks 250

7 Drivers of productivity growth in Europe
 7.1 Paths for productivity growth in Europe 252
 7.2 Measuring services productivity 255
 7.3 The role of intangible capital 259
 7.4 Demand, productivity and innovation 263
 7.5 Resource reallocation, competition and regulation 265
 7.6 Concluding remarks 267

References 268
Index 289
Figures

2.1 GDP per hour worked and GDP per capita, total economy, EU-15 as percentage of USA, 1960–2007

2.2 Productivity and capital intensity levels, market economy, EU-10 as percentage of USA, 1980–2005

2.3 Sources of labour productivity growth, market economy, EU countries and USA, 1980–2005

2.4 Major sector shares in total hours worked, total economy, EU countries and USA, 1980 and 2005

2.5 Major sector contributions to the EU–US gap in labour productivity, market economy, 2005

2.6 Major sector contributions to aggregate labour productivity growth, market economy, EU countries and USA, 1980–2005

3.1 Growth rates of multi-factor productivity, twenty-six industries, EU, 1980–2005

3.2 Growth rates of labour productivity, twenty-six industries, EU, 1980–2005

3.3 Growth rates of gross output, twenty-nine industries, EU, 1980–2005

3.4 Share of high-skilled workers in total hours worked (percentage), twenty-nine industries, EU, 1995

3.5 Growth rates of labour input, twenty-nine industries, EU, 1980–2005

3.6 Share of ICT capital compensation in value added (percentage), twenty-nine industries, EU, 1995

3.7 Growth rates of capital input, twenty-nine industries, EU, 1980–2005

4.1 Ratio of services and goods production, EU and USA, 1980–2005

4.2 Value added per hour worked (1980 = 100)

4.3 Multi-factor productivity (1980 = 100)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Labour compensation as a percentage of value added</td>
</tr>
<tr>
<td>4.5</td>
<td>Compensation of high-skilled workers as a percentage of value added</td>
</tr>
<tr>
<td>4.6</td>
<td>Compensation of ICT capital as a percentage of value added</td>
</tr>
<tr>
<td>5.1</td>
<td>Labour productivity growth in the EU, 1980–2005</td>
</tr>
<tr>
<td>5.2</td>
<td>Labour productivity growth in the EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.3</td>
<td>Industry contributions to aggregate labour productivity, EU, 1980–2005</td>
</tr>
<tr>
<td>5.4</td>
<td>Industry contributions to aggregate labour productivity, EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.5</td>
<td>Share of ICT and non-ICT capital compensation in value added, market economy, EU and USA, 1980–2005</td>
</tr>
<tr>
<td>5.6</td>
<td>Contribution to aggregate labour productivity of industry ICT-capital deepening, EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.7</td>
<td>Contribution to aggregate labour productivity of industry non-ICT capital deepening, EU, 1980–2005</td>
</tr>
<tr>
<td>5.8</td>
<td>Contribution to aggregate labour productivity of industry non-ICT capital deepening, EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.9</td>
<td>Contribution to aggregate labour productivity of industry changes in labour composition, EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.10</td>
<td>Multi-factor productivity growth in the EU, 1980–2005</td>
</tr>
<tr>
<td>5.11</td>
<td>Multi-factor productivity growth in the EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.12</td>
<td>Contribution to aggregate labour productivity of industry MFP growth, EU, 1980–2005</td>
</tr>
<tr>
<td>5.13</td>
<td>Contribution to aggregate labour productivity of industry MFP growth, EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.14</td>
<td>Examples of Harberger diagrams</td>
</tr>
<tr>
<td>5.15</td>
<td>Harberger diagrams of market economy MFP growth in the EU and USA, 1995–2005</td>
</tr>
<tr>
<td>5.16</td>
<td>Harberger diagrams of market economy MFP growth in the EU, 1980–95 and 1995–2005</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.17</td>
<td>Harberger diagrams of market economy ICT capital growth in the EU and USA, 1995–2005</td>
<td>184</td>
</tr>
<tr>
<td>6.1</td>
<td>Industry contributions to the EU–US gap in labour productivity, market economy, 2005</td>
<td>232</td>
</tr>
<tr>
<td>6.2</td>
<td>Standard deviation of multi-factor productivity levels, 1970–2005</td>
<td>239</td>
</tr>
<tr>
<td>7.1</td>
<td>Sector contributions to market economy MFP growth scenarios, Europe and USA</td>
<td>254</td>
</tr>
<tr>
<td>7.2</td>
<td>Intangibles and labour productivity growth in Europe and the USA, 1995–2003, market economy</td>
<td>261</td>
</tr>
</tbody>
</table>
Tables

1.1 Growth of GDP, GDP per capita and GDP per hour worked, EU-15 and USA, 1950–2006 page 4
2.1 Decomposition of output growth, market economy, EU and USA, 1980–2005 27
2.2 Major sector contributions to labour productivity growth in the market economy, EU and USA, 1980–2005 32
2.3 Hours worked and productivity growth, major sectors, EU, 1980–2005 33
2.4 Contributions of sectors to labour productivity growth in market services, EU and USA, 1980–2005 35
2.5 Gross value added growth and contributions, market economy, EU countries, 1995–2005 40
2.6 Major sector contributions to labour productivity growth in the market economy, EU countries and USA, 1995–2005 42
3.1 Example of decomposition of gross output growth, metal manufacturing in the UK, 1995–2005 53
3.2 Example of decomposition of value added and labour productivity growth, metal manufacturing in the UK, 1995–2005 57
3.3 Classification of labour force for each industry 64
3.4 Example of labour services growth calculation, metal manufacturing in the UK, 1995–2005 65
3.5 List of asset types and depreciation rates 69
3.6 Example of capital services growth calculation, metal manufacturing in the UK, 1995–2005 75
3.7 Growth accounting for major sectors, EU, 1980–2005 79
3.8 Growth accounting for major sectors, USA, 1980–2005 80
List of tables

3.9 Growth in market versus non-market economy, EU and USA, 1995–2005 83
3.10 Share of value added in market services in European countries deflated using A-, B- or C-methods around the year 2000 (percentage) 93
3.11 Average annual growth of real retail sales and margins, 1987–2002 97
3.12 Growth in implicit bank output volumes and in house prices relative to the overall price level, 2000–6 99
3A.1 Variables in EU KLEMS database 109
3A.2 Country, period and variable coverage in EU KLEMS database, March 2008 113
3A.3 Industry list for growth accounting variables 115
3A.4 Definitions of high-, medium- and low-skilled 119
3A.5 Sources used for employment and wages by type 122
3A.6 Sources used for capital stock estimation 124
3A.7 Total economy shares and industry characteristics, twenty-six industries, EU, 1980 and 2005 126
4.1 Description of sectors 132
4.2 Gross value added by sector as a percentage of GDP 134
4.3 Hours worked by sector as a percentage of total hours worked 135
4.5 Compensation of all workers as a percentage of value added 145
4.6 Compensation of high-skilled workers as a percentage of value added 147
4.7 Compensation of ICT capital as a percentage of value added 149
5.1 Industry sources of labour productivity growth, EU and USA 155
5.2 Industry contributions to aggregate labour productivity, EU and USA 159
5.3 Growth of ICT-capital deepening and ICT shares, EU and USA 163
List of tables

5.4 Contribution of industry ICT-capital deepening, EU and USA 164
5.5 Contribution of industry non-ICT capital deepening, EU and USA 167
5.6 Contribution of change in industry labour composition, EU and USA 170
5.7 Contribution of industry MFP growth, EU and USA 175
5.8 Patterns of market economy MFP growth, 1980–2005 180
5A.1 Growth accounts by industry, EU, 1980–2005 187
6.1 Example of input and output comparison, transport equipment manufacturing, Germany and USA, 1997 198
6.2 Example of level accounting, transport equipment manufacturing, Germany and USA, 1997 200
6.3 Various alternative PPP measures, 1997 212
6.4 Measures of labour input, 1997, market economy 213
6.5 Measures of capital input per hour worked, 1997, market economy 216
6.6 Alternative measures of market economy MFP levels, 1997 (USA = 1) 218
6.7 Relative levels of inputs and productivity in the EU, major sectors, 2005 (USA = 1) 227
6.8 Accounting for the EU–US gap in labour productivity, 2005 228
6.9 Relative levels of inputs and productivity in the EU, twenty-six industries, 2005 (USA = 1) 230
6.10 Relative levels of inputs and productivity, EU countries, market economy, 2005 (USA = 1) 234
6.11 Accounting for the labour productivity gap with the USA, EU countries, market economy, 2005 235
6.12 Technology leaders, major sectors, 2005 237
6.13 Testing for convergence across countries 240
6.14 Relationship between technology gaps, ICT use and productivity growth 244
6.15 Relationship between high-skilled workers and productivity growth at the aggregate and services industry levels 247
6.16 The effect of barriers to entry on productivity growth in services 250
Economic growth is a key factor in the improvement of our living standards and hence of great interest to academics and policy makers alike. This book aims to explain why growth across Europe has been disappointing since the mid 1990s, both compared to earlier periods and compared to the United States, which showed resurgent growth after 1995. In the process we present the EU KLEMS database, a rich data toolbox that can be used to explore these and other growth-related questions. The main message of this book is that an industry perspective on growth and the sources of growth is essential because of the great diversity in the drivers of growth in agriculture, manufacturing and services industries, including trade, transport, financial, business and personal services.

The empirical study of sources of economic growth has a long tradition in Europe, starting as far back as the seventeenth century when William Petty began to construct measures of economic performance including comparisons of output and productivity in industry, trade and transportation. Over the centuries, with the emergence of standardised national accounts and other internationally comparable statistical sources, the measurement of sources of growth has become more sophisticated. During the second half of the last century, growth accounting evolved as a standard methodology. In 1987, Jorgenson, Gollop and Fraumeni published a pioneering study laying out what has become known as the KLEMS approach. The KLEMS method measures the changes in the quantity and quality of capital (K), labour (L), energy (E), material inputs (M) and service inputs (S) as contributions to output growth. This approach has subsequently been particularly useful in tracing the effects of the development and deployment of information and communication technology (ICT) on the resurgence of the American economy since 1995 (Jorgenson et al. 2005).

While the KLEMS methodology has been replicated in studies for some individual countries, a standardised comparison of European
countries has not been available until recently. This became increasingly pressing in the early 2000s as European productivity growth seemed to be on a declining trend, in the context of accelerating growth in the United States and increasing competition from emerging economies such as China and India. The slowing growth and faltering emergence of the knowledge economy in Europe led to an ambitious action programme of the European Commission, called the ‘Lisbon Agenda’, aimed at boosting competitiveness, primarily through innovation. Monitoring and evaluation of progress in achieving these goals required a comprehensive analysis of economic growth in Europe based on a detailed industry-level database. With evidence of the rising importance of ICT and market services for growth, there was also renewed attention given to measurement issues and the international comparability of national statistics. Clearly, there was an increasing need for new methods, comparable statistics and convergence of methods of measuring productivity. The aim of the EU KLEMS initiative set up in 2003 was to meet this demand.

This study is the result of the multi-year, multi-national endeavour involving a large consortium of researchers. It was supported by the European Commission, Research Directorate-General as part of the 6th Framework Programme, Priority 8, Policy Support and Anticipating Scientific and Technological Needs, and is part of the EU KLEMS Project on Growth and Productivity in the European Union. The grant made it possible to form a consortium of eighteen partners, including universities and research institutes across Europe, as well as Japan and the United States. The result of this collaboration is the EU KLEMS Growth and Productivity Accounts database, publicly available at www.euklems.net. This database includes measures of output and detailed capital and labour inputs, and derived variables such as labour and multi-factor productivity at the industry level. The measures are developed for twenty-five individual European Union member states, the United States and Japan and cover the period from 1970 onwards. This book combines a documentation of the EU KLEMS methodology and database with a number of analytical studies that have been carried out using the database. It can therefore be used as the primary reference work for the current and future versions of the EU KLEMS database. In particular Chapters 3 and 6 provide a detailed account of the growth accounting and level accounting methodologies used in the EU KLEMS project. The analysis in the book is
Preface and acknowledgements

primarily focused on the comparative output and productivity performance of the European Union, relative to the United States. In this respect, Chapters 2, 4 and 5 reflect our assessment of the comparative growth performance of the two regions during the period 1980–2005.

The current book is a reflection of the significant work carried out by the EU KLEMS consortium that has led to the creation of the online database, and a series of academic and policy publications on growth and productivity. The data work for the EU KLEMS Growth and Productivity Accounts would not have been possible without the input of all consortium members and the persons belonging to these institutions. Our thanks go to Centre d’études prospectives et d’informations internationals (CEPII), Paris (Michel Fouquin, Laurence Nayman, Anita Wölfl); Centre for Economic and Business Research (CEBR), Copenhagen (Martin Junge, Svend Hougaard Jensen, Mickey Petersen); Netherlands Bureau for Economic Policy Analysis (CPB), The Hague (Henri van der Wiel, Ate Nieuwenhuis, Paul de Jongh); Deutsches Institut für Wirtschaftsforschung e.V. (DIW), Berlin (Bernd Görgzig, Martin Gornig, Rainer Vosskamp); Federaal Planbureau (FPB), Brussels (Chantal Kegels, Bernadette Biautour, Jeroen Fiers, Bernard Klaus Michel, Luc Avonds); Istituto di Studi e Analisi Economica (ISAE), Rome (Carlo Milana); Instituto Valenciano De Investigaciones Economicas (IVIE), Valencia (Matilde Mas, Javier Quesada, Ezequiel Uriel, Lorenzo Serrano); Helsingin kauppakorkeakoulu (Helsinki School of Economics) (Matti Pohjola); Austrian Institute of Economic Research (WIFO), Vienna (Michael Peneder, Kurt Kratena, Martin Falk); Vienna Institute for International Economic Studies (WIW), Vienna (Peter Havlik, Monica Schwarzhappel, Robert Stehrer, Sebastian Leitner); Amsterdam Business and Economic Research (AMBER), Free University Amsterdam (Eric Bartelsman, Hans Quene); University of Konstanz (Jörg Beutel); The Conference Board Europe, Brussels (the late Robert McGuckin III, Janet Hao); Harvard University (Dale Jorgenson, Mun Ho, Jon Samuels); Pellervo Economic Research Institute (PTT), Helsinki (Jinne Huovari, Jukka Jalava) and individual contributors such as Kyoji Fukao (Hitotsubashi University), Tsutomu Miyagawa (Gakushuin University), Hak K. Pyo (Seoul National University) and Keun Hee Rhee (Korea Productivity Center). We are particularly grateful to our colleagues at the University of Groningen, the National Institute for Economic and Social Research (NIESR) and the University of Birmingham for all their support.
Preface and acknowledgements

during various phases of the project. At the University of Groningen our thanks go to Gerard Ypma, Ton van Moergastel and Edwin Stuivenwold for their excellent work in getting the first EU KLEMS database off the ground, and to Jop Woltjer for his seamless continuation of this work. Lourens Broersma, Carolina Castaldi, Erik Dietzenbacher, Abdul Azeez Erumbam, Reitze Gouma and Bart Los provided additional help and advice. We are also grateful to Rob Willems for administrative support to the project. At NIESR, our thanks go to Mari Kangasniemi, Peter Loveridge, Ana Rincon and Catherine Robinson; and at the University of Birmingham to Yasheng Maimaiti, Fei Peng and Nicholas Zubanov.

An important element in the success of the EU KLEMS project has been the co-operation with national statistical institutes across the European Union. The growth accounting system will hopefully be implemented by national statistical institutes and Eurostat as part of their regular statistical systems. While we received very useful advice from all statistical institutes across Europe, we have particularly received significant in-kind help from Statistics Netherlands (Mark de Haan, Dirk van den Bergen, Bert Balk, Hans Kolfoort), Statistics Finland (Pirkko Aulin Ahmavaara and Antti Pasanen), the Office of National Statistics, UK (Anna Soo and Tuu Van Nguyen), ISTAT, Italy (Cecilia Joan-Lasinio, Massimiliano Iommi, Antonella Baldassarini), Statistics Luxembourg (John Haas) and Statistics Sweden (Hans-Olof Hagén and Tomas Skytesvall). Researchers from the OECD played an important role, both as external observers and advisors; we would like to thank in particular Colin Webb, Dirk Pilat, Paul Schreyer and Nadim Ahmad. We are also grateful to Eurostat, especially to Arturo de la Fuente, Frank Schönborn, Leonidas Akritidis and Jukka Jalava for their support in arranging regular meetings with the National Accounts Working Party as well as setting up the statistical module of the EU KLEMS database at the Eurostat website. We received strong support from the European Commission Services throughout the project and are especially grateful to DG Research (Ian Perry, Marianne Paasi) and DG ECFIN (Werner Roeger, Kieran McMorrow, Douglas Koszerek) for their help and advice. Finally, the project also owes much to a number of individuals for advice and support at various stages of the project, including Eric Bartelsman, Erwin Diewert, Mun Ho, Mathilde Mas, Nicholas Oulton and Jack Triplett.
Preface and acknowledgements

We owe special thanks to Dale Jorgenson from Harvard University, one of the pioneers of the growth accounting method. His unwavering support for the project from the embryonic initialisation phase to completion has been highly motivating and a continuous source of inspiration for the project participants. We are looking forward to continuing our collaboration and extending this type of work to other countries in the world.

Finally, we also would like to thank Rebecca Cooke and Chris Doubleday for excellent work on the final edit of this manuscript.

All viewpoints expressed in this book are those of the authors only, and any remaining errors are our responsibility.