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1 The Case for Differential Geometry

If Mathematics is the language of Physics, then the case for the use of Differential

Geometry in Mechanics needs hardly any advocacy. The very arena of mechani-

cal phenomena is the space-time continuum, and a continuum is another word for

a differentiable manifold. Roughly speaking, this foundational notion of Differen-

tial Geometry entails an entity that can support smooth fields, the physical nature

of which is a matter of context. In Continuum Mechanics, as opposed to Classical

Particle Mechanics, there is another continuum at play, namely, the material body.

This continuous collection of particles, known also as the body manifold, supports

fields such as temperature, velocity and stress, which interact with each other accord-

ing to the physical laws governing the various phenomena of interest. Thus, we can

appreciate how Differential Geometry provides us with the proper mathematical

framework to describe the two fundamental entities of our discourse: the space-time

manifold and the body manifold. But there is much more.

When Lagrange published his treatise on analytical mechanics, he was in fact

creating, or at least laying the foundations of, a Geometrical Mechanics. A classical

mechanical system, such as the plane double pendulum shown in Figure 1.4, has a

finite number of degrees of freedom. In this example, because of the constraints

imposed by the constancy of the lengths of the links, this number is 2. The first mass

may at most describe a circumference with a fixed centre, while the second mass may

at most describe a circumference whose centre is at the instantaneous position of the

first mass. As a result, the surface of a torus emerges in this example as the descriptor

of the configuration space of the system. Not surprisingly, this configuration space is,

again, a differentiable manifold. This notion escaped Lagrange, who regarded the

degrees of freedom as coordinates, without asking the obvious question: coordinates

of what? It was only later, starting with the work of Riemann, that the answer to this

question was clearly established. The torus, for example (or the surface of a sphere,

for that matter), cannot be covered with a single coordinate system. Moreover, as

Lagrange himself knew, the choice of coordinate systems is quite arbitrary. The

underlying geometrical object, however, is always one and the same. This distinction

between the underlying geometrical (and physical) entity, on the one hand, and the

coordinates used to represent it, on the other hand, is one of the essential features of
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4 Motivation and Background

modern Differential Geometry. It is also an essential feature of modern Physics. The

formulation of physical principles, such as the principle of virtual power, may attain

a high degree of simplicity when expressed in geometrical terms. When moving into

the realm of Continuum Mechanics, the situation gets complicated by the fact that

the number of degrees of freedom of a continuous system is infinite. Nevertheless,

at least in principle, the geometric picture is similar.

There is yet another aspect, this time without a Particle Mechanics counterpart,

where Differential Geometry makes a natural appearance in Continuum Mechanics.

This is the realm of constitutive equations. Whether because of having smeared the

molecular interactions, or because of the need to agree with experimental results

at a macroscopic level in a wide variety of materials, or for other epistemological

reasons, the physical laws of Continuum Mechanics do not form a complete sys-

tem. They need to be supplemented with descriptors of material response known

as constitutive laws expressed in terms of constitutive equations. When seen in the

context of infinite dimensional configuration spaces, as suggested above, the con-

stitutive equations themselves can be regarded as geometric objects. Even without

venturing into the infinite-dimensional domain, it is a remarkable fact that the spec-

ification of the constitutive equations of a material body results in a well-defined

differential geometric structure, a sort of material geometry, whose study can reveal

the presence of continuous distributions of material defects or other kinds of material

inhomogeneity.

In the remainder of this motivational chapter, we will present in a very informal

way some basic geometric differential concepts as they emerge in appropriate physi-

cal contexts. The concept of differentiable manifold (or just manifold, for short) will

be assumed to be available, but we will content ourselves with the mental picture

of a continuum with a definite dimension.1 Not all the motivational lines suggested

in this chapter will be pursued later in the book. It is also worth pointing out that,

to this day, the program of a fully fledged geometrization of Continuum Mechanics

cannot be said to have been entirely accomplished.

1.1. Classical Space-Time and Fibre Bundles

1.1.1. Aristotelian Space-Time

We may think separately of time as a 1-dimensional manifold Z (the time line) and

of space as a 3-dimensional manifold P . Nevertheless, as soon as we try to integrate

these two entities into a single space-time manifold S, whose points represent events,

we realize that there are several possibilities. The first possibility that comes to mind is

what we may call Aristotelian space-time, whereby time and space have independent

and absolute meanings. Mathematically, this idea corresponds to the product:

SA = Z ×P , (1.1)

1 The rigorous definition of a manifold will be provided later in Chapter 4.
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The Case for Differential Geometry 5

where × denotes the Cartesian product. Recall that the Cartesian product of two sets

is the set formed by all ordered pairs such that the first element of the pair belongs

to the first set and the second element belongs to the second set. Thus, the elements

s of SA, namely, the events, are ordered pairs of the form (t,p), where t ∈ Z and

p ∈ P . In other words, for any given s ∈ SA, we can determine independently its

corresponding temporal and spatial components. In mathematical terms, we say that

the 4-dimensional (product) manifold SA is endowed with two projection maps:

π1 : SA −→ Z , (1.2)

and

π2 : SA −→ P , (1.3)

defined, respectively, by:

π1(s) = π1(t,p) := t, (1.4)

and

π2(s) = π2(t,p) := p. (1.5)

1.1.2. Galilean Space-Time

The physical meaning of the existence of these two natural projections is that any

observer can tell independently whether two events are simultaneous and whether

or not (regardless of simultaneity) they have taken place at the same location in

space. According to the principle of Galilean relativity, however, this is not the case.

Two different observers agree, indeed, on the issue of simultaneity. They can tell

unequivocally, for instance, whether or not two light flashes occurred at the same

time and, if not, which preceded which and by how much. Nevertheless, in the case

of two nonsimultaneous events, they will in general disagree on the issue of position.

For example, an observer carrying a pulsating flashlight will interpret successive

flashes as happening always “here,” while an observer receding uniformly from the

first will reckon the successive flashes as happening farther and farther away as time

goes on. Mathematically, this means that we would like to get rid of the nonphysical

second projection (the spatial one) while preserving the first projection.

We would like, accordingly, to construct an entity that looks like SA for each

observer, but which is a different version of SA, so to speak, for different observers.

This delicate issue can be handled as follows. We define space-time as a 4-dimensional

manifold S endowed with a projection map:

π : S −→ Z , (1.6)

together with a collection of smooth and (smoothly) invertible maps:

φ : S −→ SA, (1.7)

onto the naive Aristotelian space-time SA. Each of these maps, called a trivialization

and potentially representing an observer, cannot be completely arbitrary, in a sense

that we will now explain.
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6 Motivation and Background

Fix a particular point of time t ∈ Z and consider the inverse image St = π−1({t}).

We call St the fibre of S at t. Recall that the inverse image of a subset of the range of

a function is the collection of all the points in its domain that are mapped to points

in that subset. With this definition in mind, the meaning of St is the collection of all

events that may happen at time t. We clearly want this collection to be the same for

all observers, a fact guaranteed by the existence of the projection map π . Different

observers will differ only in that they will attribute possibly different locations to

events in this fibre. Therefore, we want the maps φ to be fibre preserving in the sense

that each fibre of S is mapped to one and the same fibre in SA. In other words, we

don’t want to mix in any way whatsoever the concepts of space and time. We require,

therefore, that the image of each fibre in S by each possible φ be exactly equal to a

fibre of SA. More precisely, for each t ∈ Z we insist that:

φ(St) = π−1
1 ({t}). (1.8)

A manifold S endowed with a projection π onto another manifold Z (called the

base manifold) and with a collection of smooth invertible fibre-preserving maps onto

a product manifold SA (of the base times another manifold P) is known as a fibre

bundle. Note that the fibres of SA by π1 are all exact copies of P . We say that P is

the typical fibre of S. A suggestive pictorial representation of these concepts is given

in Figure 1.1. A more comprehensive treatment of fibre bundles will be presented in

Chapter 7.

EXAMPLE 1.1. Microstructure: A completely different application of the notion

of fibre bundle is the description of bodies with internal structure, whereby the

usual kinematic degrees of freedom are supplemented with extra degrees of freedom

intended to describe a physically meaningful counterpart. This idea, going at least

as far back as the work of the Cosserat brothers,2 applies to diverse materials, such

as liquid crystals and granular media. The base manifold represents the matrix, or

macromedium, while the fibres represent the micromedium (the elongated molecules

or the grains, as the case may be).
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Figure 1.1. A fibre bundle

2 Cosserat E, Cosserat F (1909), Théorie des corps déformables, Hermann et Fils, Paris.
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The Case for Differential Geometry 7

Notice in Figure 1.1 how the fibres are shown hovering above (rather than touch-

ing) the base manifold. This device is used to suggest that, although each fibre is

assigned to a specific point of the base manifold, the fibre and the base do not have

any points in common, nor is there any preferential point in the fibre (such as a zero).

Quite apart from the ability of Differential Geometry to elicit simple mental pictures

to describe very complex objects, such as a fibre bundle, another important feature is

that it uses the minimal amount of structure necessary. In the case of the space-time

bundle, for instance, notice that we have not made any mention of the fact that there

is a way to measure distances in space and a way to measure time intervals. In other

words, what we have presented is what might be called a proto-Galilean space-time,

where the notion of simultaneity has a physical (and geometrical) meaning. Beyond

that, we are now in a position to impose further structure either in the base manifold,

or in the typical fibre, or in both. Similarly, restrictions can be placed on the maps

φ (governing the change of observers). In classical Galilean space-time, the fibre P

has the structure of an affine space (roughly a vector space without an origin). More-

over, this vector space has a distinguished dot product, allowing to measure lengths

and angles. Such an affine space is called a Euclidean space. The time manifold Z

is assumed to have a Euclidean structure as well, albeit 1-dimensional. Physically,

these structures mean that there is an observer-invariant way to measure distances

and angles in space (at a given time) and that there is also an observer-invariant

way to measure intervals of time. We say, accordingly, that Galilean space-time is

an affine bundle. In such a fibre bundle, not only the base manifold and the typical

fibre are affine spaces, but also the functions φ are limited to affine maps. These

are maps that preserve the affine properties (for example, parallelism between two

lines). In the case of Euclidean spaces, the maps may be assumed to preserve the

metric structure as well.

1.1.3. Observer Transformations

Having identified an observer with a trivialization φ, we can consider the notion of

observer transformation. Let φ1 : S →SA and φ2 : S →SA be two trivializations. Since

each of these maps is, by definition, invertible and fibre preserving, the composition:

φ1,2 = φ2 ◦φ−1
1 : SA → SA, (1.9)

is a well-defined fibre-preserving map from SA onto itself. It represents the transfor-

mation from observer number 1 to observer number 2. Because of fibre preservation,

the map φ1,2 can be seen as a smooth collection of time-dependent maps φ̃t
1,2 of the

typical fibre P onto itself, as shown schematically in Figure 1.2. In Galilean space-

time proper, we limit these maps to affine maps that preserve the orientation and the

metric (Euclidean) structure of the typical fibre P (which can be seen as the usual

3-dimensional Euclidean space).

Among all such maps φ̃t
1,2 : P → P , it is possible to distinguish some that not only

preserve the Euclidean structure but also represent changes of observers that travel

with respect to each other at a fixed inclination (i.e., without angular velocity) and at
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8 Motivation and Background
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Figure 1.2. Observer transformation

a constant velocity of relative translation. Observers related in this way are said to be

inertially related. It is possible, accordingly, to divide the collection of all observers

into equivalence classes of inertially related observers. Of all these inertial classes,

Isaac Newton declared one to be privileged above all others.3 This is the class of

inertial observers, for which the laws of Physics acquire a particularly simple form.

1.1.4. Cross Sections

A cross section (or simply a section) of a fibre bundle S is a map Ŵ of the base manifold

Z to the fibre bundle itself:

Ŵ : Z → S, (1.10)

with the property:

π ◦Ŵ = idZ , (1.11)

where idZ is the identity map of the base manifold and where “◦” denotes the com-

position of maps. This property expresses the fact that the image of each element of

the base manifold is actually in the fibre attached to that element. A convenient way

to express this fact is by means of the following commutative diagram:

Z ✲Ŵ
S

❄
π

Z

◗
◗

◗
◗

◗	
idZ

(1.12)

Pictorially, as shown in Figure 1.3, the image of a section looks like a line cutting

through the fibres, hence its name. For general fibre bundles, there is no guarantee

that a smooth (or even continuous) cross section exists.

In the case of Galilean space-time, a section represents a world line or, more

classically, a trajectory of a particle.

3 This appears to be the meaning of Newton’s first law of motion.
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Figure 1.3. A (not necessarily smooth) section

EXERCISE 1.1. Explain on physical grounds why a world-line must be a cross

section, that is, it cannot be anywhere tangent to a (space) fibre of space-time.

EXERCISE 1.2. How does the world-line of a particle at rest look in Aristotelian

space-time? Let φ : S → SA be a trivialization of Galilean space-time, and let σ :

Z → SA be a constant section of Aristotelian space-time. Write an expression for

the world-line of a particle at rest with respect to the observer defined by φ. Do

constant sections exist in an arbitrary fibre bundle?

EXERCISE 1.3. Draw schematically a world diagram for a collision of two billiard

balls. Comment on smoothness.

EXERCISE 1.4. How does the motion of a cloud of particles look in space-time?

Justify the term “world-tube” for the trajectory of a continuous medium of finite

extent.

1.1.5. Relativistic Space-time

The revolution brought about by the theory of Relativity (both in its special and

general varieties) can be said to have destroyed the bundle structure altogether.

In doing so, it in fact simplified the geometry of space-time, which becomes just

a 4-dimensional manifold SR. On the other hand, instead of having two separate

metric structures, one for space and one for time, Relativity assumes the existence

of a space-time metric structure that involves both types of variables into a single

construct. This type of metric structure is what Riemann had already considered in his

pioneering work on the subject, except that Relativity (so as to be consistent with the

Lorentz transformations) required a metric structure that could lead both to positive

and to negative squared distances between events, according to whether or not they

are reachable by a ray of light. In other words, the metric structure of Relativity is

not positive definite. By removing the bundle structure of space-time, Relativity was

able to formulate a geometrically simpler picture of space-time, although the notion

of simplicity is in the eyes of the beholder.
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10 Motivation and Background

1.2. Configuration Manifolds and Their Tangent and Cotangent Spaces

1.2.1. The Configuration Space

We have already introduced the notion of configuration space of a classical mechan-

ical system and illustrated it by the example of a plane double pendulum. Figure 1.4

is a graphical representation of what we had in mind.

The coordinates θ1 and θ2, an example of so-called generalized coordinates, can-

not be used globally (i.e., over the entire torus) since two configurations that differ

by 2π in either coordinate must be declared identical. Moreover, other coordinate

choices are also possible (for example, the horizontal deviations from the vertical

line at the point of suspension). Each point on the surface of the torus corresponds to

one configuration, and vice versa. The metric properties of the torus are not impor-

tant. What matters is its topology (the fact that it looks like a doughnut, with a hole

in the middle). The torus is, in this case, the configuration space (or configuration

manifold) Q of the dynamical system at hand.

EXERCISE 1.5. Describe the configuration space of each of the following

systems:

(1) A free particle in space.

(2) A rigid bar in the plane.

(3) An inextensible pendulum in the plane whose point of suspension can move

along a rail.

(4) A pendulum in space attached to a fixed support by means of an inextensible

string that can wrinkle.

1.2.2. Virtual Displacements and Tangent Vectors

We are now interested in looking at the concept of virtual displacement. Given a con-

figuration q ∈ Q, we consider a small perturbation to arrive at another, neighbouring,

configuration, always moving over the surface of the torus (since the system cannot

�

✉

✉

✶

✶

θ1

θ2

m1

m2 Q

Figure 1.4. The plane double pendulum and its configuration manifold
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The Case for Differential Geometry 11

escape the trap of its own configuration space). Intuitively, what we have is a small

piece of a curve in Q, which we can approximate by a tangent vector.

To make this notion more precise, imagine that we have an initially unstretched

thin elastic ruler on which equally spaced markers have been drawn, including a zero

mark. If we now stretch or contract this ruler, bend it and then apply it to the surface

of the torus at some point q, in such a way that the zero mark falls on q, we obtain an

intuitive representation of a parametrized curve γ on the configuration manifold. Let

us now repeat this procedure ad infinitum with all possible amounts of bending and

stretching, always applying the deformed ruler with its zero mark at the same point q.

Among all the possible curves obtained in this way, there will be a subcollection that

shares the same tangent and the same stretch with γ . We call this whole collection

(technically known as an equivalence class of parametrized curves) a tangent vector

to the configuration manifold at q. Notice that, although when we draw this tangent

vector v in the conventional way as an arrow, it seems to contradict the fact that we

are supposed to stay on the surface, the definition as an equivalence class of curves

(or, less precisely, a small piece of a curve) removes this apparent contradiction.

Any of the curves in the equivalence (e.g., the curve γ of departure) can be used as

the representative of the vector. The vector can also be regarded as a derivation with

respect to the curve parameter (the equally spaced markers).

The collection of all tangent vectors at a point q ∈ Q is called the tangent space of

Q at q and is denoted by TqQ. In the case of the torus, the interpretation of TqQ is the

tangent plane to the torus at q, as shown in Figure 1.5. The tangent space at a point

q of the configuration space is the carrier of all the possible virtual displacements

away from the configuration represented by q. A physically appealing way to look

at virtual displacements is as virtual velocities multiplied by a small time increment.

1.2.3. The Tangent Bundle

We now venture into a further level of abstraction. Assume that we attach to each

point its tangent space (just like one would attach a small paper sticker at each point

of a globe). We obtain a collection denoted by TQ and called the tangent bundle of Q.

An element of this contraption consists of a point plus a tangent vector attached to it

Q

�

✁
✁☛

q

γ
TqQ

v

Figure 1.5. A tangent space
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12 Motivation and Background

(i.e., a configuration and a virtual displacement away from it). It requires, therefore,

four parameters: the two coordinates of the point and the two components of the

vector with respect to some basis of the tangent space. Since everything is smooth, it

is not difficult to imagine that we are now in the presence of a 4-dimensional manifold

TQ. Moreover, given a tangent vector (a sticker, say), we can unambiguously say to

which point it is attached. In other words, we a have a natural projection map τ :

τ : TQ → Q, (1.13)

Thus, the tangent bundle TQ has the natural structure of a fibre bundle. Its dimension

is always equal to twice the dimension of its base manifold Q. Its typical fibre is an

n-dimensional vector space. Since all finite dimensional vector spaces of the same

dimension are equivalent to each other, we may say that the typical fibre of the

tangent bundle of an n-dimensional manifold is R
n = R×·· ·×R

︸ ︷︷ ︸

n times

.

A section of the tangent bundle is a map Ŵ : Q → TQ satisfying condition (1.11),

namely:

τ ◦Ŵ = idQ. (1.14)

The physical meaning of a section of the tangent bundle is a vector field, since at each

point q of Q the map Ŵ appoints a tangent vector Ŵ(q).

1.2.4. The Cotangent Bundle

We move one step further into the physics and the geometry of the situation. Consider

the notion of a linear operator on virtual displacements. This entity would be a

black box that produces real numbers whenever it receives as an input a virtual

displacement, just as a slot machine produces a pack of gum whenever you insert a

coin. The fact that we are looking at a linear operator means that multiplying the input

by a number results in the output being multiplied by the same number. Moreover,

an input equal to the sum of two other inputs elicits an output exactly equal to the

sum of the outputs elicited by the inputs acting separately. If the inputs are virtual

displacements, the physical entity which behaves just like that is nothing but a force!

And the corresponding output of our linear machine is nothing but the virtual work

of the force over the given virtual displacement. Thus, forces are not vectors that

cohabit with the virtual displacements upon which they act. They are vectors, indeed,

in the sense that they also can be added and multiplied by numbers. They, however,

live in their own vector space of linear operators and manifest themselves by the

result of their (linear) action on the virtual displacement vectors. The collection of

linear operators over the vectors of a vector space V is known as the dual space of

V , denoted by V∗. Its elements are sometimes called covectors, to make a distinction

from the vectors of V . Thus, the collection of all forces (covectors) that may act upon

the virtual displacements issuing from the configuration q ∈ TqQ is the dual space

T∗
qQ, called the cotangent space of Q at q.
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