Colloidal Quantum Dot Optoelectronics and Photovoltaics

Capturing the most up-to-date research in colloidal quantum dot (CQD) devices, this book is written in an accessible style by the world’s leading experts. The application of CQDs in solar cells, photodetectors, and light-emitting diodes (LEDs) has developed rapidly over recent years, promising to transform the future of clean energy, communications, and displays. This complete guide to the field provides researchers, students, and practitioners alike with everything they need to understand these developments and begin contributing to future applications.

Introductory chapters summarize the fundamental physics and chemistry, whilst later chapters review the developments that have propelled the field forwards, systematically working through key device advances. The science of CQD films is explained through the latest physical models of semiconductor transport, trapping, and recombination, whilst the engineering of organic and inorganic multilayered materials is shown to have enabled major advances in the brightness and efficiency of CQD LEDs.

Gerasimos Konstantatos is an Assistant Professor at the Institut de Ciències Fotòniques (ICFO) in Barcelona. His research interests lie in the area of nanomaterials and nanostructures for optoelectronics and solar cell applications. His expertise is in the field of colloidal quantum dots, and he was awarded the TR35 Spain Prize 2012 and the 2013 Fresnel Prize for Applied Aspects for his salient contributions in the field of colloidal quantum dot optoelectronics.

Edward H. Sargent is a Professor in the Department of Electrical and Computer Engineering at the University of Toronto, where he holds the Canada Research Chair in Nanotechnology. His book The Dance of Molecules: How Nanotechnology is Changing Our Lives (2005) has been translated into French, Spanish, Italian, Korean, and Arabic. He is a Founder and CTO of InVisage Technologies, Inc.
Colloidal Quantum Dot Optoelectronics and Photovoltaics

Edited by
GERASIMOS KONSTANTATOS
ICFO – The Institute of Photonic Sciences, Barcelona

EDWARD H. SARGENT
University of Toronto
Contents

List of contributors
Preface

1 Engineering colloidal quantum dots: synthesis, surface chemistry, and self-assembly
Maryna I. Bodnarchuk and Maksym V. Kovalenko

1.1 Colloidal synthesis of inorganic nanocrystals and quantum dots
1.1.1 Introductory remarks: history and terminology 1
1.1.2 Basics of the surfactant-assisted colloidal synthesis of NC quantum dots 2

1.2 Long-range ordered NC solids
1.2.1 Single-component NC superlattices 7
1.2.2 Multicomponent NC superlattices 9
1.2.3 Shape-directed self-assembly of NCs 13

1.3 Surface chemistry – a gateway to applications of NCs
1.3.1 Organic capping ligands 16
1.3.2 Complete removal of organic ligands and inorganic surface functionalization 19

References 20

2 Aqueous based colloidal quantum dots for optoelectronics
Vladimir Lesnyak and Nikolai Gaponik

2.1 Introduction 30

2.2 Aqueous colloidal synthesis of semiconductor NCs
2.2.1 ZnX NCs 32
2.2.2 Alloyed ZnSe based NCs 34
2.2.3 CdX NCs 35
2.2.4 Core/shell CdTe based NCs 36
2.2.5 Alloyed CdTe based NCs 37
2.2.6 CdSe, CdSe/CdS NCs 39
2.2.7 HgX and PbX NCs 39

References 39
vi Contents

2.2.7.1 HgX NCs 40
2.2.7.2 PbX NCs 40

2.3 Assemblies and functional architectures of NCs 41
 2.3.1 LbL assembly technique 43
 2.3.2 Assembly of NCs on micro- and nano-beads 46
 2.3.3 Covalent coupling of NCs 47
 2.3.4 Controllable aggregation 48
 2.3.5 Nanowires and nanosheets 49
 2.3.6 Nanocrystal based gels and aerogels 49

2.4 Conclusions and outlook 50
References 51

3 Electronic structure and optical transitions in colloidal semiconductor nanocrystals 59
Todd D. Krauss and Jeffrey J. Peterson

3.1 Introduction 59
3.2 Foundational concepts 60
3.3 A simple model 65
3.4 Experimental evidence for quantum confinement 67
3.5 Engineered quantum dot structures 71
3.6 Advanced theoretical treatments 73
3.7 Atomistic approaches 76
3.8 Current challenges and future outlook 80
References 81

4 Charge and energy transfer in polymer/nanocrystal blends: physics and devices 87
Kevin M. Noone and David S. Ginger

4.1 Introduction 87
4.2 A brief history of QD/polymer optoelectronics 88
 4.2.1 Quantum dot light emitting diodes (QD-LEDs) – size-tunable emission across the spectrum 88
 4.2.2 Quantum dot photovoltaics (QD-PV) and photodetectors – converting photons to electrons 90
 4.2.2.1 QD-PVs 90
 4.2.2.2 Quantum dot photodetectors 93
4.3 The QD–organic interface – ligands and more 96
 4.3.1 Ligands 96
 4.3.2 Energetics 98
 4.3.2.1 Charge transfer and Förster resonance energy transfer (FRET) in QD-LEDs 99
 4.3.2.2 Type II heterojunctions and charge transfer in QD-PVs 99
4.4 Conclusion and future outlook 104
References 105
5 Multiple exciton generation in semiconductor quantum dots and electronically coupled quantum dot arrays for application to third-generation photovoltaic solar cells

Matthew C. Beard, Joey M. Luther, and Arthur J. Nozik

5.1 Introduction 112
5.2 Relaxation dynamics of photogenerated electron–hole pairs in QDs 115
 5.2.1 Transient absorption spectroscopy (TA) 117
5.3 Multiple exciton generation (MEG) 121
 5.3.1 MEG in QDs 121
 5.3.2 MEG controversy and role of photocharging 125
 5.3.3 MEG efficiency and comparison to impact ionization in bulk semiconductors 128
5.4 QD solar cells 131
 5.4.1 MEG photocurrent and determination of the internal quantum efficiency (IQE) in QD solar cells 133
5.5 QD arrays 136
 5.5.1 MEG in PbSe QD arrays 137
5.6 Conclusions 140
References 141

6 Colloidal quantum dot light emitting devices

Vanessa Wood, Matthew Panzer, Seth-Coe Sullivan, and Vladimir Bulovic

6.1 Introduction 148
6.2 Why QDs for LEDs? 148
 6.2.1 Saturated colors 148
 6.2.2 Solution processable 150
 6.2.3 Stability 150
6.3 QD and device physics influencing LED performance 151
 6.3.1 Quantifying the luminescence efficiency 151
 6.3.2 QD surface states 152
 6.3.3 QD charging 153
 6.3.4 Charge transport in QD films 154
 6.3.5 Field driven luminescence quenching 154
 6.3.6 Isolating the effects of charge and field 155
6.4 Characterizing QD-LEDs 157
6.5 QD-LEDs based on optical downconversion 160
6.6 QD-LEDs based on organic charge transport layers 161
 6.6.1 Deposition of QDs: spin casting, phase separation, and microcontact printing 161
 6.6.2 Operation of colloidal QD-LEDs 163
6.7 QD-LEDs with inorganic charge transport layers 165
 6.7.1 Reasons for inorganic charge transport layers 165
Contents

6.7.2 Fabrication of all inorganic QD-LEDs 165
6.7.3 Operation of QD-LED with inorganic charge transport layers 166
6.7.4 Improving the efficiency of QD-LEDs with inorganic charge transport layers 167
6.8 Future work 167
References 168

7 Colloidal quantum dot photodetectors
Gerasimos Konstantatos

7.1 Introduction 173
 7.1.1 Applications of top-surface photodetectors 173
 7.1.2 Colloidal quantum dots (CQDs) for light detection 174
7.2 Fundamentals of photodetectors 175
 7.2.1 Types of photodetectors 175
 7.2.2 Figures of merit 176
7.3 Prior art in solution-processed photodetectors 177
7.4 Solution-processed QD photoconductors 179
 7.4.1 Photoconductive gain and noise in PbS QD photodetectors 179
 7.4.2 Visible-wavelength and multispectral photodetection 183
 7.4.3 Control of temporal response in photoconductive detectors via trap state engineering 185
7.5 CQD based phototransistors 187
7.6 CQD photodiodes 190
7.7 Conclusions – summary 193
References 195

8 Optical gain and lasing in colloidal quantum dots
Sjoerd Hoogland

8.1 Introduction 199
8.2 Optical properties of colloidal nanocrystal quantum dots 200
8.3 Carrier dynamics in colloidal quantum dots 202
 8.3.1 Auger recombination 205
 8.3.2 Poisson statistics and state filling 206
8.4 Gain in solid state nanocrystal quantum dot films 207
 8.4.1 Amplified spontaneous emission (ASE) 208
 8.4.2 Variable strip length (VSL) for optical gain measurements 209
 8.4.3 Experimental techniques for waveguide loss measurement in colloidal quantum dot films 209
 8.4.4 Modal gain in visible colloidal quantum dots based on cadmium chalcogenides 211
 8.4.5 Modal gain in infrared colloidal quantum dots based on lead chalcogenides 213
8.5 Spectral and temporal characteristics of optical gain in nanocrystal quantum dots 214
 8.5.1 Visible colloidal quantum dots based on cadmium chalcogenides 214
 8.5.2 Infrared colloidal quantum dots based on lead chalcogenides 218
8.6 Colloidal nanocrystal lasers 221
 8.6.1 Microcapillary resonators 223
 8.6.2 Microsphere resonators 224
 8.6.3 Distributed feedback resonators 225
 8.6.4 Microtoroid resonators 225
 8.6.5 Other resonators 226
8.7 Future prospects 226
 8.7.1 Single exciton gain 226
References 229

9 Heterojunction solar cells based on colloidal quantum dots 233
 Jeffrey J. Urban and Delia J. Milliron
 9.1 Introduction 233
 9.2 Chemistry of CQDs for solar cells 234
 9.3 Physics of CQDs for solar cells 238
 9.3.1 Electronic structure evolution in low dimensional systems 238
 9.3.2 Fundamentals of light–matter interactions in QDs 240
 9.3.3 Selection rules and the complications of H 241
 9.4 Optical and electronic properties of CQD films for solar cells 241
 9.5 Device physics and design of CQD heterojunction solar cells 246
 9.6 Technology and scientific outlook 250
References 251

10 Solution-processed infrared quantum dot solar cells 256
 Jiang Tang and Edward H. Sargent
 10.1 Introduction 256
 10.2 Infrared CQDs for the full absorption of solar spectrum 257
 10.2.1 Bandgap engineering for the broadband solar spectrum match 257
 10.2.2 Light absorption in CQD film 260
 10.3 Semiconductor solar cell fundamentals 260
 10.3.1 Fundamentals of p–n junction 260
 10.3.2 Fundamentals of solar cells 263
 10.3.3 Implications for CQD solar cell optimization 264
 10.4 Electrical properties of CQD films 265
 10.4.1 Measurements of electrical properties of CQD films 265
 10.4.2 Transport in CQD film 269
 10.4.3 CQD passivation 272
 10.4.4 CQD film doping 275
 10.4.5 Dielectric constant of CQD film 276
Contents

10.5 Progress in CQD solar cell performance 276
10.5.1 Schottky solar cells 276
10.5.2 Heterojunction solar cells 279
10.6 Device stability 283
10.7 Perspectives and conclusions 285
References 286

11

Semiconductor quantum dot sensitized TiO$_2$ mesoporous solar cells 292
Lioz Etgar, Hyo Joong Lee, Sang Il Seok, Md. K. Nazeeruddin, and Michael Gratzel

11.1 Introduction 292
11.2 Mesoscopic PbS quantum dot/TiO$_2$ heterojunction solar cells 294
11.2.1 Solid-state PbS/TiO$_2$ heterojunction solar cell 299
11.3 QD/TiO$_2$ mesoporous solar cell using the SILAR process 301
11.4 Cobalt complex-based redox couples in CQD-TiO$_2$ mesoporous solar cells 305
References 308

Index 310
Contributors

Matthew C. Beard
The National Renewable Energy Laboratory, USA

Maryna Bodnarchuk
ETH Zurich

Vladimir Bulovic
Massachusetts Institute of Technology

Nikolai Gaponik
Technical University of Dresden

David S. Ginger
University of Washington

Sjoerd Hoogland
University of Toronto

Gerasimos Konstantatos
The Institute of Photonic Sciences (ICFO), Barcelona

Maksym V. Kovalenko
EMPA – Swiss Federal Laboratories for Materials Science and Technology

Todd D. Krauss
University of Rochester

Hyo Joong Lee
Chonbuk National University, South Korea

Vladimir Lesnyak
Technical University of Dresden

Lioz Etgar
Ecole Polytechnique Fédérale de Lausanne (EPFL)
List of contributors

Joey M. Luther
The National Renewable Energy Laboratory, USA

Michael Grätzel
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Delia J. Milliron
Lawrence Berkeley National Laboratory

Md. K. Nazeeruddin
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Kevin M. Noone
University of Washington

Arthur J. Nozik
University of Colorado, Boulder

Matt Panzer
Tufts University

Jeffrey J. Peterson
State University of New York, Geneseo

Edward H. Sargent
University of Toronto

Sang Il Seok
Korea Research Institute of Chemical Technology

Seth-Coe Sullivan
QD Vision, Inc., USA

Jiang Tang
University of Toronto

Jeffrey J. Urban
Lawrence Berkeley National Laboratory

Vanessa Wood
Integrated Systems Laboratory, ETH Zurich
2013 is a landmark year for the field of colloidal quantum dot (CQD) optoelectronics. Nearly three decades have passed since the pioneering syntheses of CQDs; since then countless innovations in synthesis and processing of quantum dots have led to multifunctional colloidal nanoparticles and nanomaterials, achieved via advanced control over particle size, shape, and composition. A deeper understanding has been gained of the physical chemistry of these materials, with electronic and optical properties increasingly elaborated and traced to detailed atomic-scale composition. Excitingly, the first products based on this new class of materials have been announced and will revolutionize optoelectronics. No longer will high-efficiency and high-performance devices be limited to the realm of single-crystal epitaxy. Companies large and small will deploy CQDs in their next-generation displays to improve the efficiency and quality of the displays. Quantum dots will feature in high-efficiency light-emitting diodes, enabling vastly improved color rendering in displays and lighting alike. The first quantum-dot-based cameras will soon be shipped to customers, offering high-fidelity imaging and professional camera features in a mobile platform. Impacting the economically vast and societally important field of solar energy harvesting is within sight as photovoltaic devices leverage CQDs’ spectral tunability for more spectrally efficient harvesting via multijunction architectures or multie exciton processes now demonstrated in devices.

This book aims to provide an updated snapshot of this fast-moving field. It is intended for both new researchers in the CQD dot field, and also experts seeking to gain an up-to-date view of CQD domains adjacent their own.

The book has three main sections: chemistry and synthesis of CQDs and their assembly; the physics and optoelectronic properties of these materials; and optoelectronic devices including lasers, light-emitting diodes, photodetectors, and solar cells.

In Chapters 1 and 2 we present advances in the synthesis and self-assembly of CQDs into solids. Chapter 1 focuses on the organometallic synthesis of CQDs and nanocrystals, and presents the innovative synthetic schemes that have enabled enhanced control over size, shape, and composition. It devotes considerable attention to the organic and the new inorganic ligands that are used to control the properties of the quantum dots and reviews the self-assembly of quantum dots into supra-nanocrystalline solids. Chapter 2 presents aqueous-based synthesis of CQDs and their self-assembly into functional thin films. Aqueous-based CQDs have enabled biological applications and may offer a less materials- and energy-consuming route to CQD optoelectronics.
The second section of the book examines the physical properties of CQDs and quantum dot nanocomposites. Chapter 3 presents the fundamental physical processes that describe how photons and charge carriers interact inside quantum dots. It lays out the theoretical framework within which to understand the quantum size effect, a distinguishing feature of quantum dots that sets them apart from bulk materials and has earned them the name artificial atoms. Chapter 4 explores the optoelectronic properties of hybrid nanocomposites of quantum dots and polymers that have been exploited in light emission, detection, and solar harvesting. It offers a fundamental picture of charge transfer dynamics and energy transfer in quantum dot polymer composites and their applications to devices. Chapter 5 focuses on multiple exciton generation, a phenomenon at play in colloidal quantum dots that enhances their potential in third-generation photovoltaics. The chapter reviews how the Shockley–Quiesser limit can be overcome, looking at both basic physics and applications.

The third section shines a light on optoelectronic devices made using CQDs. Chapter 6 presents the development of light-emitting diodes based on CQDs for display and lighting applications. After consideration of the fundamental mechanisms at play in CQD electroluminescent devices, the chapter presents different architectures and reviews metrology and characterization techniques of CQD light-emitting diodes. Chapter 7 lays out the ideas that have enabled sensitive, rapid, and convenient photodetection using CQD solids, beginning with the first observations of photoconduction and proceeding to advanced photodetector architectures including photoconductors, photodiodes, and phototransistors. The last chapter of this section reviews lasing from quantum dots with emphasis on optically pumped laser cavities and the physics of optical gain and lasing in CQD materials.

The last three chapters of the book are dedicated to the timely and fast-growing field of CQD solar cells: Chapter 9 introduces and elaborates on polymer–nanocrystal hybrid solar cells and the key achievements in the synthesis of quantum dots, rods, and tetrapods that brought about a significant boost in performance in these solar cell architectures. Chapter 10 discusses the solar cells that have led to the highest certified CQD photovoltaic performance reported, architectures that employ a dense and crosslinked quantum dot solid from which electrons and holes are extracted using selective solid-state contacts. Chapter 11 deals with the evolution of dye-sensitized solar cells via the employment of inorganic sensitizers comprising CQDs. It considers the physics involved and the deployment of CQDs on the surface of mesoporous nanostructured electrodes.