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ADAPTATION IN DYNAMICAL SYSTEMS

In the context of this book, adaptation is taken to mean a feature of a system

aimed at achieving the best possible performance when mathematical models of

the environment and the system itself are not fully available. This has applications

ranging from theories of visual perception and the processing of information to the

more technical problems of friction compensation and adaptive classification of

signals in fixed-weight recurrent neural networks.

Largely devoted to the problems of adaptive regulation, tracking and identi-

fication, this book presents a unifying system-theoretic view on the problem of

adaptation in dynamical systems. Special attention is given to systems with nonlin-

early parametrized models of uncertainty. Concepts, methods, and algorithms given

in the text can be successfully employed in wider areas of science and technology.

The detailed examples and background information make this book suitable for a

wide range of researchers and graduates in cybernetics, mathematical modeling,

and neuroscience.

IVAN TYUKIN is an RCUK Academic Fellow in the Department of Mathematics,

University of Leicester. His research and scientific interests cover many areas,

including the analysis, modeling, and synthesis of systems with fragile, nonlinear,

chaotic, and meta-stable dynamics.

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

ADAPTATION

IN DYNAMICAL SYSTEMS

IVAN TYUKIN

University of Leicester and

Saint-Petersburg State Electrotechnical University

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge. 

It furthers the University’s mission by disseminating knowledge in the pursuit of  

education, learning and research at the highest international levels of excellence.

www.cambridge.org  

Information on this title: www.cambridge.org/9780521198196

© I. Tyukin 2011

This publication is in copyright. Subject to statutory exception  

and to the provisions of relevant collective licensing agreements,  

no reproduction of any part may take place without the written  

permission of Cambridge University Press.

First published 2011

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Tyukin, Ivan.

Adaptation in Dynamical Systems / Ivan Tyukin.

p. cm

Includes bibliographical references and index.

ISBN 978-0-521-19819-6 (hardback)

1. Dynamics. 2. Control theory–Mathematical models.

3. Neurosciences–Mathematics. I. Title.

QA845.T94 2011

515´.39–dc22   2010051427

ISBN  978-0-521-19819-6  Hardback

Cambridge University Press has no responsibility for the persistence or  

accuracy of URLs for external or third-party internet websites referred to in  

this publication, and does not guarantee that any content on such websites is,  

or will remain, accurate or appropriate.

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Preface page ix

Notational conventions xv

Part I Introduction and preliminaries

1 Introduction 3

1.1 Observation problems 5

1.2 Regulation problems 10

1.3 Summary 14

2 Preliminaries 15

2.1 Attracting sets and attractors 15

2.2 Barbalat’s lemma 20

2.3 Basic notions of stability 23

2.4 The method of Lyapunov functions 28

2.5 Linear skew-symmetric systems with time-varying coefficients 32

3 The problem of adaptation in dynamical systems 44

3.1 Logical principles of adaptation 44

3.2 Formal definitions of adaptation and mathematical statements

of the problem of adaptation 50

3.3 Adaptive control for nonlinear deterministic dynamical systems 55

3.4 Applicability issues of conventional methods of adaptive

control and regulation 74

3.5 Summary 79

Part II Theory

4 Input–output analysis of uncertain dynamical systems 83

4.1 Operator description of dynamical systems 84

4.2 Input–output and input–state characterizations of stable systems 89

v

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

vi Contents

4.3 Input–output and input–state analysis of uncertain

unstable systems 94

4.4 Asymptotic properties of systems with locally

bounded input–output and input–state mappings 109

4.5 Asymptotic properties of a class of unstable systems 112

Appendix to Chapter 4 130

5 Algorithms of adaptive regulation and adaptation in dynamical

systems in the presence of nonlinear parametrization and/or possibly

unstable target dynamics 151

5.1 Problems of adaptive control of nonlinear systems in the

presence of nonlinear parametrization 152

5.2 Direct adaptive control 163

5.3 Adaptive regulation to invariant sets 188

5.4 Adaptive control of interconnected dynamical systems 192

5.5 Non-dominating adaptive control for dynamical systems with

nonlinear parametrization of a general kind 202

5.6 Parametric identification of dynamical systems with nonlinear

parametrization 207

Appendix to Chapter 5 218

Part III Applications

6 Adaptive behavior in recurrent neural networks with fixed weights 265

6.1 Signals to be classified 266

6.2 The class of recurrent neural networks 268

6.3 Assumptions and statement of the problem 269

6.4 The existence result 272

6.5 Summary 292

7 Adaptive template matching in systems for processing of visual

information 294

7.1 Preliminaries and problem formulation 300

7.2 A simple adaptive system for invariant template matching 307

7.3 Examples 336

7.4 Summary 348

8 State and parameter estimation of neural oscillators 350

8.1 Observer-based approaches to the problem of state

and parameter estimation 353

8.2 The feasibility of conventional adaptive-observer

canonical forms 362

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents vii

8.3 Universal adaptive observers for conductance-based models 374

8.4 Examples 379

8.5 Summary 384

Appendix. The Meyer–Kalman–Yakubovich lemma 387

References 395

Index 409

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

Adaptation is amongst the most familiar and wide spread phenomena in nature.

Since the early days of the nineteenth century it has puzzled researchers in broad

areas of science. Since it had often been observed in responsive behaviors of bio-

logical systems, adaptation was initially understood as a regulatory mechanism that

helps an animal to survive in a changing environment. Later the notion of adaptation

was adopted in wider fields of science and engineering.

As a theoretical discipline it began to emerge as a branch of control theory

during the first half of the twentieth century. Its beginning was marked by pub-

lications discussing basic principles of adaptation and its merits for engineering.

Imprecise technology and mechanisms were, perhaps, amongst the strongest prac-

tical motivations for such a theory at that time. Various notions of adaptation were

adopted by engineers and theoreticians in order to grasp, understand, and imple-

ment relevant features of this phenomenon in practice. The first applications of

the new theory were simple schemes for extremal control of mechanical systems;

these systems could be described by just a few linear ordinary differential equations.

Since then adaptive controllers have evolved to encompass substantially more com-

plex devices. The controlling devices themselves can now be viewed as nonlinear

dynamical systems with specific input–output properties. Methods for the design

and analysis of such systems are currently recognized by many in terms of the

theory of adaptive control and systems identification.

Because the initial motivation to develop a theory of adaptation was driven

mainly by the demands of mechanical engineering and the need for robust design

of otherwise imprecise machines, the domain of application of the theories of adap-

tation was naturally restricted to the realm of artificial devices and engineering.

The focus of the developing theory was restricted, in particular, to the problems

of control of a relatively narrow class of well-studied and modeled mechanical

systems, many of which were stable in the Lyapunov sense, for which the values

of some parameters and variables are unknown and cannot be measured explicitly.

ix

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Preface

Yet, the potential role of the theory of adaptation was much wider and broader. It

has become evident recently that there exists a demand for a systematic theory of

adaptation outside of the domain of engineering.

Understanding basic mechanisms and principles of adaptation and regulation is

recognized as relevant in physics, chemistry, biology, and brain sciences (Sontag

2004; Fradkov 2005). Because of the huge complexity of the phenomena studied in

these domains, using the standard language of each particular science for systematic

studies of the phenomenon of adaptation might not be adequate. Therefore in these

areas system-theoretic views, irrespective of the particular subjects of study, have

exceptional potential.

Apart from in the natural sciences, the needs for further development of the theory

of adaptation are evident in handling complex artificial systems. This is especially

true when changes in the working environment cannot be predicted a priori or there

is a substantial degree of uncertainty about the system’s internal state. Although

there is a large literature on the theory of adaptive systems, both in the theoretical

and in the applied domain, there are several issues preventing explicit application

of classical recipes of adaptive control in these fields. These issues with classical

schemes are

• the necessity to have a precise mathematical model of a controlled system,

• the requirement that models of uncertainties are linear or convex with respect to

unknown or uncertain variables,

• the assumption that the target dynamics is stable in the Lyapunov sense,

• the assumption that a corresponding Lyapunov function for the target motions is

available (Sastry and Bodson 1989; Narendra and Annaswamy 1989; Krstić et al.

1995; Ljung 1999; Eykhoff 1975; Bastin et al. 1992; Fradkov et al. 1999).

Every one of these requirements alone limits the role of the existing theory of

adaptive systems in solving relevant problems in science.Altogether they constitute

the “standard” approach which applies to several canonical cases, which are limited

even within the realm of engineering.

The purpose of this work is to contribute towards extending the existing theory

of adaptation and adaptive control beyond the scope of its usual applications in

engineering to new and non-conventional areas, such as neuroscience and mathe-

matical modeling of biological systems. It is hoped that this extension will create

additional opportunities for control theorists to apply their expertise in novel and

still developing fields of science; it will also help to expand the synthetic and

analytical functions of systems and control theory into the natural sciences.

The focus of this book on the analysis of possible adaptation mechanisms in sys-

tems with nonlinear parametrization and unstable target dynamics was influenced
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Preface xi

by the author’s work in the Laboratory for Perceptual Dynamics, RIKEN Brain

Science Institute, Japan from November 2001 to March 2007. Neural systems of

living organisms, and ultimately the human brain, were the source of inspiration.

It became clear very quickly that the standard tools and methods in the arsenal of

conventional adaptive control theory do not offer an acceptable explanation for the

versatility and robustness of neural systems working in an uncertain environment.

The aim therefore was to enhance the theory by making it suitable for the analysis

and synthesis of adaptive schemes for nonlinear dynamical systems:

• with potentially Lyapunov-unstable and non-equilibrium target dynamics;

• when explicit definition of the target sets is not possible;

• using minimal, qualitative, macro-information about the system, and also

allowing substantial uncertainty about the specific mathematical model of the

system;

• allowing uncertainty models that are maximally adequate to describe the physical

laws of processes and phenomena in the system.

The necessary ingredients of this extended theory of adaptation follow naturally

from the logic of its development: from basic principles of the system’s organization

in the presence of uncertainties to specific laws of regulation. These ingredients

include

(1) methods for analysis of basic input–output properties of the nonlinear systems;

they should allow incomplete knowledge of equations describing the system

dynamics; and they also should apply both to stable and to unstable systems;

(2) principles and methods of adaptation to disturbances that are unknown a priori

and unavailable for measurement; the principles should rely exclusively on the

fundamental physical properties of the systems considered; and the adaptation

mechanisms should be able to realize these principles using adequate physi-

cal models of uncertainties and requiring a minimal amount of measurement

information.

The following topics received particular attention: analysis of the completeness,

realizability, and state boundedness of interconnections of uncertain dynamical sys-

tems; conditions ensuring convergence of the system’s state to the target sets and

their neighborhoods; designing laws of adaptive regulation and parameter estima-

tion of nonlinearly parametrized models; characterizing the quality of the transient

dynamics in systems with uncertainties; and parametric, signal/functional pertur-

bations. In order to provide the reader with the necessary background and also

to support our own argumentation a brief review of major classical concepts of

adaptation is included.
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xii Preface

The content of the book is based largely on the work I had the privilege to carry

out together with my colleagues and co-authors.1 The structure of the book can

be summarized as follows. The text is organized into three large parts. The first

part (Chapters 1–3) contains mainly introductory and preliminary results. Proofs of

lemmas and theorems presented in this introductory part are kept within the main

text.

In Chapter 1 we provide an informal discussion of the notion of adaptation

followed by an overview of the range of specific problems considered in the text.

Chapter 2 contains background and preliminary results such as basic notions

of stability, a very brief introduction to the method of Lyapunov functions, and a

particularly important result on the exponential stability of the origin for a class of

linear systems of ordinary equations with skew-symmetric matrices.

In Chapter 3 we review and analyze conventional approaches to the problem of

adaptive control of nonlinear systems. We formulate the main theoretical and prac-

tical issues arising in these standard approaches (Fomin et al. 1981; Fradkov 1990;

Narendra and Annaswamy 1989; Krstić et al. 1995) and their mathematical state-

ments of the problem. These issues include the ambiguity of standard mathematical

notions of an adaptive system, performance measures, limitations on defining the

system’s target sets,2 restricted classes of the uncertainty models, and requirements

for precise knowledge of the mathematical model of a system.

The second part, Chapters 4 and 5, presents the main theoretical results developed

in the monograph. In order to preserve the integrity of the text, proofs of statements

formulated in this part are given in appendices at the ends of these chapters.

In Chapter 4 we consider nonlinear systems defined in terms of their “input-

to-output” and “input-to-state” characterizations given by mappings, or operators

in functional, Lp, spaces. We introduce mathematical tools for the analysis of

interconnections of dynamical systems with input–output (input–state) operators

that are locally bounded in state and provide a formal statement of the problem for

functional synthesis of an adaptive system. We demonstrate how this problem can

be solved. The solution to the problem of functional synthesis of an adaptive system

allows us to formulate various principles of its organization at the macroscopic level:

the separation principle, the bottle-neck principle, and the emergence of weakly

attracting sets in the interconnections of systems with contracting and wandering

dynamics. The latter result is based on Tyukin et al. (2008a).

1 This includes earlier texts such as Tyukin and Terekhov (2008).
2 One of the most severe restrictions is the requirement for the target dynamics to be globally stable in the

sense of Lyapunov. In addition, there is a necessity to specify target sets of the adaptive system a priori. The
latter condition either requires prior identification of the system, which contradicts the very essence of adaptive
behavior, or leads to enforcing motions that are not necessarily inherent and, hence, optimal to a physical system
itself.
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Preface xiii

In Chapter 5 we utilize the principles derived in the previous chapter in order to

provide an adequate statement of the problem of adaptive control and regulation of

nonlinear dynamical systems. Its distinctive features are that the uncertainty models

are allowed to be nonlinearly parametrized, mathematical models of the system

need not be known precisely, the target dynamics is not restricted exclusively to

globally Lyapunov-stable motions, and the target sets could be defined implicitly –

as invariant sets of an auxiliary dynamical system. Generally, the problem is stated

as that of regulating the influence of uncertainties on the target dynamics to some

functional space. This allows one to refrain from explicit use of the method of

Lyapunov functions and, hence, avoid its limitations.

We also consider several specific problems that have substantial theoretical and

practical interest:

• adaptive regulation to invariant sets;

• adaptation in interconnected systems;

• state and parameter inference for systems with nonlinear parametrization of

uncertainty.

In order to solve these problems two synthesis strategies were developed: the

method of the virtual adaptation algorithm presented in Tyukin et al. (2007b)

and the strategy based on purposeful introduction of unstable attracting sets into

the system’s state space (Tyukin et al. 2008a).

In the third part of the book (Chapters 6–8) we illustrate how the theory can be

used to solve a number of practical problems of control, processing of informa-

tion, and identification in mechanics, experimental biophysics, and computer and

cognitive science. In particular, we consider the problem of adaptive classification

in neural networks with fixed weights, the problem of identifying the dynamics

of neuronal cells, and the problem of invariant recognition of spatially distributed

information. We discuss why existing techniques cannot be successfully applied to

solve these problems, or their application yields practically inefficient outcomes.

The content of this part is based on Tyukin et al. (2008b), Tyukin et al. (2009), and

Fairhurst et al. (2010).

This book would never have seen the light of day without the continuous sup-

port, help, and encouragement I received from many people with whom I have

had the honor of working. I would like to express my deep gratitude to Professor

V. A. Terekhov, my teacher, friend, and co-author, for his help, fruitful and moti-

vating discussions of the philosophical foundations of the problem of adaptation,

and unlimited patience. I am grateful to my colleagues and co-authors Cees van

Leeuwen, Danil Prokhorov, Henk Nijmeijer, Erik Steur, David Fairhurst, Alexey

Semyanov, and Inseon Song who contributed to the development of the ideas in the

monograph. I am grateful to Dr Steven Holt and his colleagues for proof-reading
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xiv Preface

and editing the monograph at the final stage of production. Finally, I am indebted

to my dear wife Tanya, who contributed to the applied side of the project, assisted

with the artwork, and also helped me enormously to summarize the results during

the later stage of the production of the manuscript. My own personal role was lim-

ited to mere listening, interpretation, and writing. As is unfortunately the case in

scientific endeavors, errors are inevitable companions. Even though I tried to avoid

these unwelcome companions, my own journey is unlikely to be an exception, for

which I fully accept sole responsibility. I would therefore be extremely grateful to

readers, should they wish to help by contacting me when an error is found.
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Notational conventions

Throughout the text the following notational conventions apply.

• Symbol R defines the field of real numbers and R≥c = {x ∈ R|x ≥ c}; N defines

the set of natural numbers; and Z denotes the set of whole numbers or integers.

• Symbol R
n stands for an n-dimensional linear space over the field of reals.

• Ck denotes the space of functions that are at least k times differentiable.

• Symbol K denotes the class of all strictly increasing functions κ : R≥0 → R≥0

such that κ(0) = 0; symbol K∞ denotes the class of all functions κ ∈ K such

that lims→∞ κ(s) = ∞.

• Let � be a set, then by S{�} we denote the set of all subsets of �.

• ‖x‖ denotes the Euclidian norm of x ∈ R
n.

• The notation | · | stands for the absolute value of a scalar.

• The notation sign(·) denotes the signum function.

• By Ln
p[t0, T ], where t0 ≥ 0, T ≥ t0, p ≥ 1, we denote the space of all functions

f : R≥0 → R
n such that

‖f‖p,[t0,T ] =

(∫ T

t0

‖f(τ )‖p dτ

)1/p

< ∞.

• The notation ‖f‖p,[t0,T ] denotes the Ln
p[t0, T ]-norm of f(t).

• By Ln
∞[t0, T ], t0 ≥ 0, T ≥ t0, we denote the space of all functions f : R≥0 → R

n

such that

‖f‖∞,[t0,T ] = ess sup{‖f(t)‖, t ∈ [t0, T ]} < ∞,

and ‖f‖∞,[t0,T ] stands for the Ln
∞[t0, T ]-norm of f(t).

• Let A be a set in R
n, x ∈ R

n, and let ‖ · ‖ be the usual Euclidean norm in R
n. By

the symbol ‖·‖A we denote the following induced norm:

‖x‖A = inf
q∈A

{‖x − q‖}.

xv
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xvi Notational conventions

• Let � ∈ R≥0, then the notation ‖x‖A�
stands for the following equality:

‖x‖A�
=

{

‖x‖A − �, ‖x‖A > �,

0, ‖x‖A ≤ �.

• The symbol ‖·‖A∞,[t0,t] is defined as follows:

‖x(τ )‖A∞,[t0,t] = sup
τ∈[t0,t]

‖x(τ )‖A .

• Let f : R
n → R

m be given. The function f(x) : R
n → R

m is said to be locally

bounded if for any ‖x‖ < δ, δ ∈ R>0 there exists a constant D(δ) > 0 such that

‖f(x)‖ ≤ D(δ).

• LetŴ be ann×n square matrix, thenŴ > 0 denotes a positive definite (symmetric)

matrix. (Ŵ−1 is the inverse of Ŵ). By Ŵ ≥ 0 we denote a positive semi-definite

matrix.

• We reserve ‖x‖2
Ŵ to denote the quadratic form xTŴx, where x ∈ R

n and xT is the

transpose of x.

• Symbols λmin(Ŵ) and λmax(Ŵ) stand for the minimal and maximal eigenvalues

of Ŵ, respectively.

• By the symbol I we denote the identity matrix.

• The solution of a system of differential equations ẋ = f(x, t , θ , u(t)), u : R≥0 →

R
m, θ ∈ R

d passing through point x0 at t = t0 will be denoted for t ≥ t0 as

x(t , x0, t0, θ , u), or simply as x(t) if it is clear from the context what the values

of x0 and θ are and how the function u(t) is defined.

• Let u : R
n × R

d × R≥0 → R
m be a function of state x, parameters θ̂ , and time t .

Let in addition both x and θ̂ be functions of t . Then, when the arguments of u are

clearly defined by the context, we will simply write u(t) instead of u(x(t), θ̂(t), t).

• When dealing with vector fields and partial derivatives we will use the following

extended notion of the Lie derivative of a function. Let it be the case that x ∈

R
n and x can be partitioned as follows: x = x1 ⊕ x2, where x1 ∈ R

q , x1 =

(x11, . . . , x1q)
T, x2 ∈ R

p, x2 = (x21, . . . , x2p)T, q + p = n, and ⊕ denotes

concatenation of two vectors. We define f : R
n × R

d × R → R
n such that

f(x, θ , t) = f1(x, θ , t) ⊕ f2(x, θ , t), where f1 : R
n × R

d × R → R
q , f1(·) =

(f11(·), . . . , f1q(·))
T, f2 : R

n ×R
d ×R → R

p, and f2(·) = (f21(·), . . . , f2p(·))T.

Then Lfi(x,θ ,t)ψ(x, t), i ∈ {1, 2}, denotes the Lie derivative of the function ψ(x, t)

with respect to the vector field fi(x, θ , t):

Lfi(x,θ ,t)ψ(x, t) =

dim xi
∑

j=1

∂ψ(x, t)

∂xij

fij (x, θ , t).
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Notational conventions xvii

• Let f , g : R
n → R

n be differentiable vector fields. Then the symbol [f , g] stands

for the Lie bracket:

[f , g] =
∂f

∂x
g −

∂g

∂x
f .

The adjoint representation of the Lie bracket is defined as

ad0
f g = g, adk

f g = [f , adk−1
f g].
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