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Introduction

Consider a living organism or an artificial mechanism, which we shall refer to for

the moment as a system, aiming to perform optimally in an uncertain environment.

Despite the fact that the environment may be uncertain, we will suppose that we

know the structure of the physical laws of the environment determining plausible

motions of the system. Suppose that we even know what the system’s action might

be and assume that criteria of optimality according to which the system must deter-

mine its actions are available. Would we be able to decide a priori which particular

action a system must execute or how it should adjust itself in order to maintain its

behavior at the optimum?

Depending on the language describing the system’s behavior, environment, and

uncertainties a number of theoretical frameworks can be employed to find an answer

to this non-trivial question. If the available information about the system is limited

to a statistical description of the events and their likelihoods are known, then a

good methodological candidate is the theory of statistical decision making. On the

other hand, if the more sophisticated and involved apparatus of stochastic calculus

is used to formalize the behavior of a system in an uncertain environment then

a reasonable way to approach the analysis of such an object is to employ the

theory of stochastic control and regulation. Despite these differences in how the

behavior of a system may be described in various settings, there is a fundamental

similarity in the corresponding theoretical frameworks. This similarity, if expressed

informally, is that every framework should contain a description of the system’s

actions, mechanisms for maintaining and adjusting its behavior, and criteria of

optimality or goals. These are in essence components of what we usually understand

when calling a system adaptive.

In biology, according to the Encyclopedia Britannica, adaptation is described as

a “process by which an animal or plant species becomes fitted to its environment; it

is the result of natural selection’s acting upon heritable variation. Even the simpler

organisms must be adapted in a great variety of ways: in their structure, physiology,
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4 Introduction

and genetics, in their locomotion or dispersal, in their means of defense and attack,

in their reproduction and development, and in other respects.” Actions, regulation

and adjustments, criteria of optimality (fitness) are all present in this definition.

In systems theory there is less consensus on what the term “an adaptive system”

describes. According to Evleigh (1967) a system is called adaptive if it “is a system

which is provided with a means of continuously monitoring its own performance

in relation to a given figure of merit or optimal condition and a means of modifying

its own parameters by a closed-loop action so as to approach this optimum.” Other

definitions of an adaptive system have been provided by e.g. L. Zadeh, R. Bellman

and R. Kalaba, J. G. Truxall, and V. A. Yakubovich, which we will consider in

detail in Chapter 3. Yet they all share the very same ingredients such as actions,

adjustments, and criteria of optimality. In this book we will also use the same

general understanding of what an adaptive system means, though we will allow

some technical deviations from these classical definitions.

Because the phenomenon of adaptation is generally understood as a special reg-

ulatory process in which a system maintains its performance at the optimum by

adjusting itself and its actions, a natural language to analyze the phenomenon

of adaptation is the language of systems and control theories. There are many

inspiring and excellent monographs covering the general topic of adaptation. A

non-exhaustive list of influential texts includes Tsypkin (1968), Tsypkin (1970),

Narendra and Annaswamy (1989), Sastry and Bodson (1989), Krstić et al. (1995),

and Fradkov et al. (1999). Hence it is reasonable to ask whether anything new

can be added to this wealth of intellectual resources by one more text. As is often

the case in science, novelty is a frequent consequence of a new formulation of a

known problem, or it emerges as a result of answering new questions about familiar

objects.

The purpose of this monograph is to contribute to the theory of adaptive sys-

tems by presenting a list of challenging questions and providing a unified theory

that would allow one to find answers to these questions in a rigorous and system-

atic way. There are numerous examples illustrating the benefits of mathematical

analysis of the phenomenon of adaptation: they range from solving the problems

of crisis predictions (Gorban et al. 2010) to explaining plausible mechanisms of

cell functioning in biology (Moreau and Sontag 2003), understanding the evolu-

tion of species (Gorban 2007), and motor learning (Smith et al. 2006). It is the

author’s hope that the methods developed here will also be useful for addressing

open questions in science.

Below we present several examples of these questions emerging across the

disciplines ranging from brain modeling to the issues of precise perturbation com-

pensation in engineering and the problems of signal classification and pattern

analysis in artificial intelligence. These examples are split into two major groups
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1.1 Observation problems 5

related to the problems of observation and regulation. For each of these groups

we provide informal statements of the corresponding adaptation problems. These

statements are not to be considered final and we will reshape them later on in the

text. The function of these statements is to emphasize different facets of the problem

of adaptation. There was no specific reason for choosing particular subject areas

from which the examples are taken except probably the author’s personal interests

and bias.

1.1 Observation problems

The problem of state and parameter reconstruction of dynamical systems from

the values of just few variables is a common task in the domain of mathematical

modeling. Despite the fact that this problem received substantial attention in the

past (see e.g. Bastin and Dochain (1990) and Ljung (1999)), there are gray spots

in the literature for which finding a computationally plausible and theoretically

rigorous solution remains a non-trivial task. The usual sources of difficulties are

the presence of nonlinear parametrization, and the fact that we are not allowed to

influence the system’s behavior by varying its inputs in a reasonably broad class of

functions.

There are numerous observation problems of this kind in physics. We start by

presenting two examples from the domains of biophysics and neuroscience.

1.1.1 Example: quantitative modeling in biophysics and neuroscience

Let us consider the problem of simultaneous state and parameter reconstruction of

models describing the dynamics of neural cells. Most of the available models of

individual biological neurons are systems of ordinary differential equations describ-

ing the cell’s response to stimulation; their parameters characterize variables such

as time constants, conductances, and response thresholds, which are important for

relating the model responses to the behavior of biological cells. Even the simplest

models in this class, such as the Morris–Lecar model (Morris and Lecar 1981), are

a great source of inspiration from the modeler’s perspective (see Figure 1.1). This

model is defined by the following system of equations:

V̇ =
1

C
(−ḡCam∞(V )(V − ECa) − ḡKw(V − EK) − ḡL(V − EL)) + I ,

ẇ = −
1

τ(V )
w +

w∞(V )

τ(V )
,

(1.1)
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Figure 1.1 Incompleteness of information in quantitative modeling of a cell’s
behavior. The diagram on the left shows a basic phenomenological description of
how currents propagate through a patch of the cell’s membrane. There is a number
of voltage-dependent channels, such as for Ca, Na, and K depicted in the figure.
These channels pump ions through the membrane, and each of these channels
has its own dynamics. The problem is that recording currents through every single
channel in the membrane simultaneously is not always possible. Thus they must be
estimated from available measurements, such as the membrane potentials depicted
in the right diagram.

where

m∞(V ) = 0.5

(

1 + tanh

(

V − V1

V2

))

,

w∞(V ) = 0.5

(

1 + tanh

(

V − V3

V4

))

,

τ(V ) = T0
1

cosh ((V − V3)/2V4)
.

The variable V in (1.1) corresponds to the measured membrane potential, and

I models an external stimulation current. The parameters ḡCa, ḡK , and ḡL stand

for the maximal conductances of the calcium, potassium, and leakage currents,

respectively; C is the membrane capacitance; V1, V2, V3, and V4 are the parameters

of the gating variables; T0 is the parameter regulating the time scale of ionic currents;

ECa and EK are the Nernst potentials of the calcium and potassium currents; and

EL is the rest potential.

The total number of parameters in system (1.1) is 12, excluding the stimulation

current I . Some of these parameters can be considered typical. For example the

values of the Nernst potentials for calcium and potassium channels, ECa and EK ,

are known and usually are set as ECa = 100 mV and EK = −70 mV (Koch 2002).
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The value of the rest potential, EL, can be measured explicitly. The values of the

parameters, ḡCa, ḡK , ḡL, and T0, however, may vary substantially from one cell to

another, and in general they are dependent on the conditions of the experiment. For

example, the values of ḡCa, ḡK , and ḡL depend on the density of ion channels in a

patch of the membrane; and the value of T0 is dependent on temperature. Hence, to

be able to model the dynamics of individual cells, we have to recover these values

from data.

Another example of the same nature is a model predicting the force generated by

rat skeletal muscles during brief isometric contractions (Wexler et al. 1997). The

model consists of three coupled nonlinear differential equations,

Ḟ = aT

(

1 −
F

Fm

)

−
F

τ1 + τ2T /T0
,

Ṫ = k1T0C
2 − (k1C

2 + k2)T ,

Ċ = 2(k1C
2 + k2)T − 2k1T0C

2 + kC0 − (k + k0)C,

(1.2)

where F is the force generated by the muscles, T is the concentration of Ca2+–

troponin complex, and C is the concentration of Ca2+ in the sarcoplasmic reticulum.

The parameters τ1, C0, and k are fixed, while the parameters k0, k1, k2, τ2, Fm, a,

and T0 are free. The values of T and C are not available for direct observation, and

the values of F over time can be measured. The question is whether it is possible

to reconstruct the free parameters of the model together with the values of the

concentrations T and C from the measurements of F. As in the previous example,

we are dealing with an uncertain system in which the unknown parameters enter

the right-hand side of the corresponding differential equations nonlinearly.

1.1.2 Example: adaptive classification in neural networks

The problem of estimating parameters of ordinary differential equations is not

limited to the domain of modeling. It has an important relative in the field of

artificial intelligence, namely the problem of adaptive classification of signals. An

example of this problem is provided below.

Consider a set of signals defined as

F = {fi(ξ(t), θi)}, i ∈ {1, . . . , Nf },

fi : R × R → R, fi(·, ·) ∈ C
0,

ξ : R≥0 → R, ξ(·) ∈ C
1 ∩ L∞[0, ∞], (1.3)

where θi ∈ �θ ⊂ R are parameters of which the values are unknown a priori,

�θ = [θmin, θmax] is a bounded interval, and ξ(t) is a known and bounded function.
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8 Introduction

Signals fi(ξ(t), θi) constitute the set of variables chosen to represent the state of

an object.

Let s ∈ F be an element of class F . The values of s(t , θ) are fed into the following

system of differential equations:

ẋj =

N
∑

m=1

cj ,mσ(wT
j ,mx + ws,j ,ms(t) + wξ ,j ,mξ + bj ,m),

j ∈ {1, . . . , Nx},

x = col(x1, . . . , xNx ), x(t0) = x0. (1.4)

System (1.4) is often referred to as the recurrent neural network with standard multi-

layer perceptron structure. Here cj ,m, wj ,m, ws,j ,m, wξ ,j .m, and bj ,m are parameters

of which the values are fixed, and the function σ : R → R is sigmoidal:

σ(p) =
1

1 + e−p
.

The problem of classification can now be stated as follows: is there a network of

type (1.4) that is able to recover uncertain parameters i and θi from the input s(t)

(see Figure 1.2)? Informally, this means that there exist two sets of functions of the

network state x and input s(t):

{hf ,j (x(t), s(t))}, {hθ ,j (x(t), s(t))},

hf ,j : R
Nx × R → R, hθ ,j : R

Nx × R → R, j ∈ {1, . . . , Nf },

such that the values of i and θi can be inferred from {hf ,j (x(t), s(t))} and

{hθ ,j (x(t), s(t))}, respectively, within a given finite interval of time.

Figure 1.2 Adaptive classification of temporal signals in recurrent neural networks
with fixed weights.

www.cambridge.org/9780521198196
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19819-6 — Adaptation in Dynamical Systems
Ivan Tyukin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment
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Networks (1.4) form an important class of computational structures of which the

practical utility and capabilities are widely acknowledged in the literature (Haykin

1999). This class has been shown to be successful in dealing with a wide range of

classification problems, including that of classifying signals from (1.3), provided

that the values of θi in (1.3) are known. Empirical studies suggest that recurrent

neural networks of this type are able to solve the classification problem (Feldkamp

and Puskorius 1997; Prokhorov et al. 2002a) even if θi are unknown. The question,

however, is how to show that this is indeed the case.

The problem of adaptive classification may look different from the previous

examples in the domain of modeling. Indeed, here we have an existence ques-

tion, whereas in the examples before we asked for a specific estimation algorithm.

Despite these differences, there is substantial similarity in these problems. To be

able to see this similarity, we would like to state the observation problem in a more

general context below.

1.1.3 Preliminary statement of the problem

Let us generalize model (1.1) to the following class of dynamical systems:

ẋ = f(x, θ) + g(x, θ)u(t), x(t0) ∈ �x ⊂ R
n,

y = h(x), x ∈ R
n, θ ∈ �θ , �θ ⊂ R

d , y ∈ R, (1.5)

where f , g : R
n × R

d → R
n, h : R

n → R, and u : R → R are continuous

and differentiable functions. The variable x stands for the state vector, u ∈ U ⊂

C1[t0, ∞) is the known input, θ is the vector of unknown parameters, and y is the

output of (1.5). Given that the right-hand side of (1.5) is differentiable, for any

x′ ∈ �x , u ∈ C1[t0, ∞) there exists a time interval T = [t0, t1], t1 > t0 such

that a solution x(t , x′) of (1.5) passing through x′ at t0 exists for all t ∈ T . Hence,

y(t) = h(x(t)) is defined for all t ∈ T . For the sake of convenience we will assume

that the interval T of the solutions is large enough or even coincides with [t0, ∞)

when necessary.

Taking these notations into account, we can now state the observation problem

as follows: suppose that we are able to measure the values of y(t) precisely; can

the values of x′ and the parameter vector θ be recovered from the observations of

y(t), and, if so, how? In particular, we are interested in finding a computational

algorithm

ξ̇ = p(ξ , t , u(t), y(t)), ξ0 = ξ(t0) ∈ �ξ , (1.6)
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10 Introduction

such that for some known functions hx(ξ) and hθ (ξ) and given number ε > 0 the

following property holds:

lim sup
t→∞

‖hx(ξ(t , ξ0)) − x(t)‖ ≤ ε,

lim sup
t→∞

‖hθ (ξ(t , ξ0)) − θ‖ ≤ ε ∀ ξ0 ∈ �ξ .
(1.7)

In order to see how this statement is related to the adaptive classification problem

in neural networks it is sufficient to notice that (1) the right-hand side of (1.4) can

approximate an arbitrary continuous function in a bounded domain (hence it can

model the right-hand side of (1.6)), and (2) the function s in (1.4) may be modeled

as an output of system (1.5).

System (1.5) can be viewed as an external object or environment, and compu-

tational algorithm (1.6) and the functions hx(ξ) and hθ (ξ) constitute the adapting

system. The system responds to changes in the environment so that its performance

(defined here by (1.7)) reaches an acceptable level and is maintained at this level

indefinitely. If (1.5) were linearly parametrized, i.e. the functions f(x, θ) and g(x, θ)

were linear in θ , then in order to answer this question we could employ the well-

developed machinery of standard adaptive observers design (Marino and Tomei

1995b). Yet, as model (1.1) illustrates, the assumption of linear parametrization

does not always hold. Hence alternative methods are needed.

This question (as well as other related issues of parameter estimation of nonlinear

ordinary equations) is discussed in detail in Chapter 5. In addition to presenting

sufficient conditions stipulating the mere existence of solutions to the observation

problem, we provide specific computational algorithms (1.6) satisfying the required

asymptotic properties (1.7). Special attention is paid to the analysis of the conver-

gence rates of these algorithms. One may expect that the rates of convergence are

likely to depend on the classes of nonlinearities in the models. This is indeed the

case, as we illustrate in Chapter 5.

1.2 Regulation problems

Suppose now that we are not interested in reconstructing the values of the state

and parameters of system (1.5). We do, however, require that the system’s state is

regulated to a given set in the system’s state space for all θ ∈ �θ . Consider for

example the following system:

ẋ1 = x2,

ẋ2 = −x1 − x2 + g(x1, x2, θ) + u,
(1.8)
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where x1 and x2 are the state variables, θ ∈ �θ , �θ ⊂ R
d is the vector of unknown

parameters, g : R × R × R
d → R is a continuous function, and u : R → R is an

input. Equations (1.8) describe a large class of mechanical and chemical systems.

If we accept a simplified interpretation in which x1 is the position of an object

in space and x2 is its velocity then g(x1, x2, θ) could stand for the friction terms

(Canudas de Wit and Tsiotras 1999). If (1.8) is a model of a bio-reactor then x1

and x2 are the substrate concentrations and g(x1, x2, θ) could stand for the standard

Michaelis–Menten nonlinearity (Bastin and Dochain 1990). In all these cases the

function g(x1, x2, θ) is nonlinear in θ . The question is whether there is a function

u(x1, x2, θ̂) such that the solutions of (1.8) converge to the origin for all θ ∈ �θ .

1.2.1 Example: non-dominating adaptive regulation

If no additional constraints are imposed then the above problem can be easily solved

within the framework of dominating functions (Lin and Qian 2002b; Putov 1993).

In this framework the original nonlinearly parametrized uncertainty g(x1, x2, θ) is

replaced by a dominating linearly parametrized one |g(x1, x2, θ)| ≤ ḡ(x1, x2)
Tη

and the problem is then solved using the standard method of Lyapunov functions

(see Lin and Qian (2002b) for details). Although practical, this approach is not

necessarily optimal for systems with limited resources. If the system is a living

organism then using resources excessively may be an important limiting factor.

The same argument applies for artificial yet autonomous systems. For these classes

of systems a reasonable assumption is that the system is penalized for excessive

use of domination terms in control.

One of the simplest examples of such non-dominating control schemes is the

compensatory control u = −g(x1, x2, θ). If the value of θ were known then this

feedback would be able to steer the system to the origin. The problem, however,

is that the values of θ are unknown and the function g(x1, x2, θ) is nonlinearly

parametrized. A possible strategy would be to make an initial guess at θ and then

adjust its value over time. The question, however, is how should one do this? This

is a typical example of the non-dominating adaptation problem, of which a more

formal statement is provided at the end of this section.

1.2.2 Example: adaptive tuning to bifurcations

In the previous case the set to which the system solutions are to converge was a

priori known. There are systems for which information of this kind is not explicitly

available. Their goal is not to reach a given state in the system’s state space but rather

to maintain adaptively a certain functional property of the system. An interesting

example is the problem of adaptive self-tuning of a hearing nerve cell (Moreau and
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