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Introduction

1.1 What is a negative binomial model?

The negative binomial regression model is a truly unusual statistical model.
Typically, those in the statistical community refer to the negative binomial as
a single model, as we would in referring to Poisson regression, logistic regres-
sion, or probit regression. However, there are in fact several distinct negative
binomial models, each of which are referred to as being a negative binomial
model. Boswell and Patil (1970) identified 13 separate types of derivations for
the negative binomial distribution. Other statisticians have argued that there are
even more derivations. Generally, those who are using the distribution as the
basis for a statistical model of count data have no idea that the parameterization
of the negative binomial they are employing may differ from the parameteriza-
tion being used by another. Most of the time it makes little difference how the
distribution is derived, but, as we shall discover, there are times when it does.
Perhaps no other model has such a varied pedigree.

I will provide an outline here of the intertwining nature of the negative bino-
mial. Unless you previously have a solid background in this area of statistics,
my overview is not likely to be completely clear. But, as we progress through
the book, its logic will become evident.

The negative binomial model is, as are most regression models, based on
an underlying probability distribution function (PDF). The Poisson model is
derived from the Poisson PDF, the logistic regression model is derived from
the binomial PDF, and the normal linear regression model (i.e. ordinary least
squares), is derived from the Gaussian, or normal, PDF. However, the traditional
negative binomial, which is now commonly symbolized as NB2 (Cameron
and Trivedi, 1986), is derived from a Poisson–gamma mixture distribution.
But such a mixture of distibutions is only one of the ways in which the
negative binomial PDF can be defined. Unless otherwise specified, when I
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2 Introduction

refer to a negative binomial model, it is the NB2 parameterization to which
I refer.

The nice feature of this parameterization is that it allows us to model Poisson
heterogeneity. As we shall discover, the mean and variance of the Poisson PDF
are equal. The greater the mean value, the greater is the variability in the data
as measured by the variance statistic. This characteristic of the data is termed
equidispersion and is a distributional assumption of Poisson data. Inherent in
this assumption is the requirement that counts are independent of one another.
When they are not, the distributional properties of the Poisson PDF are violated,
resulting in extra-dispersion. The mean and variance can no longer be identical.
The form of extra-dispersion is nearly always one of overdispersion. That is,
the variance is greater in value to that of the mean.

The negative binomial model, as a Poisson–gamma mixture model, is appro-
priate to use when the overdispersion in an otherwise Poisson model is thought
to take the form of a gamma shape or distribution. The same shape value
is assumed to hold across all conditioned counts in the model. If different
cells of counts have different gamma shapes, then the negative binomial may
itself be overdispersed; i.e the data may be both Poisson and negative bino-
mial overdispersed. Random-effects and mixed-effects Poisson and negative
binomial models are then reasonable alternatives.

What if the shape of the extra correlation, or overdispersion, is not gamma,
but rather another identifiable shape such as inverse Gaussian? It is possible to
construct a Poisson-inverse Gaussian distribution, and model. This distribution
is formally known as a Holla distribution, but is better known to most statisti-
cians as a PIG function. Unfortunately there is no closed form solution for the
PIG model; estimation is therefore typically based on quadrature or simulation.
It is not, however, a negative binomial, but can be used when the data takes its
form.

What if we find that the shape of overdispersion is neither gamma nor inverse
Gaussian? Poisson-lognormal models have been designed as well, but they too
have no closed form. If overdispersion in the data takes no identifiable shape,
most statisticians employ a negative binomial. There are other alternatives
though – for instance, quantile count models. We spend some time later in the
text evaluating models that address these data situations.

It may appear that we have gotten off track in discussing non-negative
binomial methods of handling Poisson overdispersion. However, these meth-
ods were derived specifically because they could better model the data than
available negative binomial alternatives. Each one we mentioned is based on
the mixture approach to the modeling of counts. Knowledge of the negative
binomial regression model therefore entails at least a rudimentary acquaintance
with its alternatives.
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1.1 What is a negative binomial model? 3

I should mention here that the form of the mixture of variances that constitute
the core of the Poisson–gamma mixture is μ + μ2/ν where μ is the Poisson
variance and μ2/ν is the gamma variance; ν is the gamma shape parameter,
and corresponds to extra dispersion in the mixture model meaning of negative
binomial, as described above. Conceived of in this manner, there is an indirect
relationship between ν and the degree of overdispersion in the data. A negative
binomial model based on this joint definition of the variance becomes Poisson
when ν approaches infinity. However, it is perfectly permissible, and more
intuitive, if ν is inverted so that there is a direct relationship between the
parameter and extra correlation. The standard symbol for the heterogeneity or
overdispersion parameter given this parameterization of the negative binomial
variance is α. Sometimes you may find r or k symbolizing ν, and confusingly
some have used k to represent α. We shall use the symbols r for ν for the
indirect relationship and α for the directly related heterogeneity parameter. All
current commercial software applications of which I am aware employ the α

parameterization. R’s glm and glm.nb functions employ θ , or 1/α.
The origin of the negative binomial distribution is not as a Poisson–gamma

mixture, which is a rather new parameterization. The earliest definitions of the
negative binomial are based on the binomial PDF. Specifically, the negative
binomial distribution is characterized as the number of failures before the rth
success in a series of independent Bernoulli trials. The Bernoulli distribution
is, as you may recall, a binomial distribution with the binomial denominator set
at one (1). Given r as an integer, this form of the distribution is also known as a
Pascal distribution, after mathematician Blaise Pascal (1623–1662). However,
for negative binomial models, r is taken as a real number greater than 0, although
it is rarely above four.

It is important to understand that the traditional negative binomial model
can be estimated using a standard maximum likelihood function, or it can be
estimated as a member of the family of generalized linear models (GLM). A
negative binomial model is a GLM only if its heterogeneity parameter is entered
into the generalized linear models algorithm as a constant. We shall observe
the consequences of this requirement later in the text.

In generalized linear model theory the link function is the term that linearizes
the relationship of the linear predictor, x′β, and the fitted value, μ or ŷ. In
turn, μ is defined in terms of the inverse link. Given that generalized linear
models are themselves members of the single parameter exponential family of
distributions, the exponential family log-likelihood for count models can be
expressed as ∑

yθ + b(θ ) + c(y) (1.1)
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4 Introduction

with θ as the link, b(θ ) as the cumulant from which the mean and vari-
ance functions are derived, and c(y) as the normalization term guaranteeing
that the probability sums to 1. For the GLM negative binomial, the link,
θ = −ln((1/(αμ)) + 1), and the inverse link, which defines the fitted value,
is b′(θ ) = μ, or 1/(α(exp(xβ) − 1)). The GLM inverse link is also symbolized
as η.

The traditional NB2 negative binomial amends the canonical link and inverse
link values to take a log link, ln(μ), and exponential inverse link, exp(x′β).
These are the same values as the canonical Poisson model. When the negative
binomial is parameterized in this form, it is directly related to the Poisson model.
As a GLM, the traditional NB2 model is a log-linked negative binomial, and is
distinguished from the canonical form, symbolized as NB-C.

We shall discover when we display the derivations of the negative binomial
as a Poisson–gamma mixture, and then from the canonical form defined as the
number of failures before the rth success in a series of independent Bernoulli
trials, that both result in an identical probability function when the mean is
given as μ. When the negative binomial PDF is parameterized in terms of x′β,
the two differ.

There are very good reasons to prefer the NB2 parameterization of the
negative binomial, primarily because it is suitable as an adjustment for Poisson
overdispersion. The NB-C form is not interpretable as a Poisson type model,
even though it is the canonical form derived directly from the PDF. We shall
discuss its interpretation later in the text. We shall also show how the negative
binomial variance function has been employed to generalize the function.

The characteristic form of the canonical and NB2 variance functions is
μ+αμ2. This value can be determined as the second derivative of the cumulant,
or b′′(θ ). A linear negative binomial has been constructed, termed NB1, that
parameterizes the variance as μ +αμ. The NB1 model can also be derived
as a form of Poisson–gamma mixture, but with different properties resulting
in a linear variance. In addition, a generalized negative binomial has been
formulated as μ + αμp, where p is a third parameter to be estimated. For NB1,
p = 1; for NB2, p = 2. The generalized negative binomial provides for any
reasonable value of p. Another form of negative binomial, called heterogeneous
negative binomial, NB-H, is typically a NB2 model, but with α parameterized. A
second table of estimates is presented that displays coefficients for the influence
of predictors on the amount of overdispersion in the data.

We have seen that the negative binomial can be understood in a variety of
ways. All of the models we have discussed here are negative binomial; both the
NB2 and NB1 are commonly used when extending the negative binomial to
form models such as mixtures of negative binomial models, or when employed
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1.2 A brief history of the negative binomial 5

in panel models. Knowing which underlying parameterization of negative
binomial is being used in the construction of an extended negative binomial
model is essential when we are evaluating and interpreting it, which is our
subject matter.

Now that we have provided an overview of the landscape of the basic
negative binomial models, we take a diversion and provide a brief history of
the negative binomial. Such an historical overview may help provide a sense
of how the above varieties came into existence, and inform us as to when and
why they are most effectively used.

1.2 A brief history of the negative binomial

If we are to believe Isaac Todhunter’s report in his History of the Mathematical
Theory of Probability from the Time of Pascal to that of Laplace (1865),
Pierre de Montmort in 1713 mentioned the negative binomial distribution in
the context of its feature as the number of failures, y, before the kth success
in a series of binary trials. As a leading mathematician of his day, Montmort
was in constant communication with many familiar figures in the history of
statistics, including Nicholas and Jacob Bernoulli, Blaise Pascal, Brook Taylor
(Taylor series) and Gottfried Leibniz (credited, along with Newton, with the
discovery of the Calculus). He is said to have alluded to the distribution in the
second edition of his foremost work, Essay on the Analysis of Games of Chance
(1708), but did not fully develop it for another five years.

The Poisson distribution upon which Poisson regression is based, origi-
nates from the work of Siméon Poisson (1781–1840). He first introduced the
distribution as a limiting case of the binomial in his, Research on the Proba-
bility of Judgments in Criminal and Civil Matters (1838). Later in the text we
derive the Poisson from the binomial, demonstrating how the two distributions
relate. Poisson regression developed as the foremost method of understand-
ing the distribution of count data, and later became the standard method used
to model counts. However, as previously mentioned, the Poisson distribution
assumes the equality of its mean and variance – a property that is rarely found
in real data. Data that have greater variance than the mean are termed Poisson
overdispersed, but are more commonly designated as simply overdispersed.

Little was done with either the earliest definition of negative binomial as
derived by Montmort, or with Poisson’s distribution for describing count data,
until the early twentieth century. Building on the work originating with Gauss
(1823), who developed the normal, or Gaussian, distribution, upon which ordi-
nary least squares (OLS) regression is based, the negative binomial was again
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6 Introduction

derived by William Gosset, under his pen name, Student, in 1907 while working
under Karl Pearson at his Biometric Laboratory in London (Student, 1907). In
the first paper he wrote while at the laboratory, he derived the negative binomial
while investigating the sampling error involved in the counting of yeast cells
with a haemocytometer. The paper was published in Biometrika, and appeared
a year earlier than his well regarded papers on the sampling error of the mean
and correlation coefficient (Jain, 1959). However, G. Udny Yule is generally,
but arguably, credited with formulating the first negative binomial distribution
based on a 1910 article dealing with the distribution of the number of deaths
that would occur as a results of being exposed to a disease (i.e. how many deaths
occur given a certain number of exposures). This formulation stems from what
is called inverse binomial sampling. Later Greenwood and Yule (1920) derived
the negative binomial distribution as the probability of observing y failures
before the rth success in a series of Bernoulli trials, replicating in a more
sophisticated manner the work of Montmort. Three years later the contagion
or mixture concept of the negative binomial originated with Eggenberger and
Polya (1923). They conceived of the negative binomial as a compound Poisson
distribution by holding the Poisson parameter, λ, as a random variable having a
gamma distribution. This was the first derivation of the negative binomial as a
Poisson–gamma mixture distribution. The article also is the first to demonstrate
that the Poisson parameter varies proportionally to the chi2 distribution with 2
degrees of freedom.

Much of the early work on the negative binomial during this period related
to the chi2 distribution, which seems somewhat foreign to the way in which we
now understand the distribution. During the 1940s, most of the original work
on count models came from George Beall (1942), F. J. Anscombe (1949), and
Maurice Bartlett (1947). All three developed measures of transformation to nor-
malize non-normal data, with Bartlett (1947) proposing an analysis of square
root transforms on Poisson data by examining variance stabilizing transforma-
tions for overdispersed data. Anscombe’s work entailed the construction of the
first negative binomial regression model, but as an intercept-only non-linear
regression. Anscombe (1950), later derived the negative binomial as a series
of logarithmic distributions, and discussed alternative derivations as well, for
example: (1) inverse binomial sampling; (2) heterogeneous Poisson sampling
where λ is considered as proportional to a chi2; (3) the negative binomial as a
population growth model; and (4) the negative binomial derived from a geo-
metric series. Evans (1953) developed what we now refer to as the NB1, or
linear negative binomial, parameterization of the negative binomial.

Leroy Simon (1961), following his seminal work differentiating the Pois-
son and negative binomial models (1960), was the first to publish a maximum
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1.2 A brief history of the negative binomial 7

likelihood algorithm for fitting the negative binomial. He was one of the many
actuarial scientists at the time who were engaged in fitting the Poisson and
negative binomial distributions to insurance data. His work stands out as being
the most sophisticated, and he was perhaps cited more often for his efforts
in the area than anyone else in the 1960s. Birch (1963) is noted as well for
being the first to develop a single predictor maximum likelihood Poisson regres-
sion model which he used to analyze tables of counts. It was not until 1981
that Plackett first developed a single predictor maximum likelihood negative
binomial while working with categorical data which he could not fit using the
Poisson approach.

Until the mid-1970s, parameterizing a non-linear distribution such as logit,
Poisson, or negative binomial, so that the distributional response variable was
conditioned on the basis of one of more explanatory predictors, was not gener-
ally conceived to be as important as understanding the nature of the underlying
distribution itself, i.e. determining the relationships that obtain between the
various distributions. When considering the negative binomial distribution, for
example, the major concern was to determine how it related to other distri-
butions – the chi2, geometric, binomial and Bernoulli, Poisson, gamma, beta,
incomplete beta, and so forth. Regression model development was primarily
thought to be a function of the normal model, and the transformations that
could be made to both the least squares response and predictors.

It was not until 1981 that the first IBM personal computer became avail-
able to the general public, an event that changed forever the manner in which
statistical modeling could be performed. Before that event, most complex sta-
tistical analyses were done using mainframe computers, which were usually at
a remote site. Interactive analyses simply did not occur. Computer time was
both time-consuming and expensive.

The emphasis on distributional properties and relationships between distri-
butions began to change following the development of generalized linear mod-
els (GLM) by John Nelder and R. W. M. Wedderburn (1972). The new emphasis
was on the construction of non-linear models that incorporated explanatory pre-
dictors. In 1974 Nelder headed a team of statisticians, including Wedderburn
and members of the statistical computing working party of the Royal Statis-
tical Society, to develop GLIM (Generalized Linear Interactive Modeling), a
software application aimed to implement GLM theory. GLIM software allowed
users to estimate GLM models for a limited set of exponential family members,
including, among others, the binomial, Poisson, and, for a constant value of its
heterogeneity parameter, the negative binomial. Although GLIM did not have
a specific option for negative binomial models, one could use the open option
to craft such a model.
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8 Introduction

Incorporated into GLIM software was the ability to parameterize Poisson
models as rates. Nelder had developed the notion of offsets as a side exercise,
only to discover that they could be used to model counts as incident rate
ratios, which as we shall discover was a considerable advancement in statistical
modeling. The traditional negative binomial model can also be parameterized
in this manner.

In 1982 Nelder joined with Peter McCullagh to write the first edition of
Generalized Linear Models, in which the negative binomial regression model
was described, albeit briefly. The second edition of the text appeared in 1989
(McCullagh and Nelder, 1989), and is still regarded as the premiere text on the
subject. GLM-based negative binomial regression software was only available
as a user-defined macro in GLIM until 1992 when Nelder developed what he
called the kk system for estimating the negative binomial as a GenStat macro.
The first implementation of the negative binomial as part of a GLM software
algorithm did not occur until 1993 (Hilbe), with the software developed for
both Stata and Xplore. The algorithm included links for the estimation of the
traditional log-linked negative binomial, NB2, the canonical model, NB-C, and
a negative binomial with an identity link. We shall discuss the use of an identity
linked negative binomial later in the text.

In 1994 Hilbe (1994) developed a SAS macro for the NB2 model using SAS’s
GENMOD procedure, SAS’s GLM modeling tool. The macro estimated the
negative binomial heterogeneity parameter using a damping method adapted
from a method first advanced by Breslow (1984) of reducing the Pearson
dispersion to a value approximating 1. In late 1994, Venables posted a GLM-
based NB2 model to StatLib using S-Plus, and SAS (Johnston) incorporated
the negative binomial into its GENMOD procedure in 1998, with the same
links offered in Stata and Xplore. SPSS did not offer a GLM procedure until
2006 with the release of version 15. A negative binomial option with all three
links was included.

R has offered its users GLM-based negative binomial models through the
glm.nb and negative.binomial functions, which are functions in the MASS
package that is normally included when installing R from the web. Packages
such as gamlss and pscl also provide negative binomial options, but they are
based on full maximum likelihood estimation.

Currently nearly all GLM software includes a negative binomial family,
and several of the major statistical applications, like Stata and LIMDEP, offer
independent maximum likelihood negative binomial commands.

Full maximum likelihood models were also being developed for extended
negative binomial models during this time. Geometric hurdle models were
developed by Mullahy (1986), with a later enhancement to negative binomial
hurdle models. Prem Consul and Felix Famoye have developed various forms of
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1.2 A brief history of the negative binomial 9

generalized negative binomial models using generalized maximum likelihood,
as well as other mixture models. They have worked singly as well as jointly
for some 30 years investigating the properties of such models – but the models
have never gained widespread popularity.

William Greene’s LIMDEP was the first commercial package to offer
maximum likelihood negative binomial regression models to its users
(2006a [1987]). Stata was next with a maximum likelihood negative binomial
(1994). Called nbreg, Stata’s negative binomial command was later enhanced to
allow modeling of both NB1 and NB2 parameterizations. In 1998, Stata offered
a generalized negative binomial, gnbreg, in which the heterogeneity parame-
ter itself could be parameterized. It should be emphasized that this command
does not address the generalized negative binomial distribution, but rather it
allows a generalization of the scalar overdispersion parameter such that param-
eter estimates can be calculated showing how model predictors comparatively
influence overdispersion. Following LIMDEP, I have referred to this model as
a heterogeneous negative binomial, NB-H, since the model extends NB2 to
permit observed sources of heterogeneity in the overdispersion parameter.

Gauss and MATLAB also provide their users with the ability to estimate
maximum likelihood negative binomial models. In Matlab one can use the
maximum likelihood functions to rather easily estimate NB2 and NB1 models.
Gauss provides modules in their Count library for handling NB2, as well
as truncated and censored negative binomial models. Only LIMDEP and R
provide both truncated and censored negative binomial modeling capability. In
the meantime, LIMDEP has continuously added to its initial negative binomial
offerings. It currently estimates many of the negative binomial-related models
that shall be discussed in this monograph. In 2006 Greene developed a new
parameterization of the negative binomial, NB-P, which estimates both the
traditional negative binomial ancillary parameter, as well as the exponent of
the second term of the variance function.

I should perhaps reiterate that the negative binomial has been derived and
presented with different parameterizations. Some authors employ a variance
function that clearly reflects a Poisson–gamma mixture; this is the case when
the Poisson variance defined as μ and the gamma as μ2/ν, is used to create the
negative binomial variance characterized as μ + μ2/ν. This parameterization is
the same as that originally derived by Greenwood and Yule (1920). An inverse
relationship between μ and ν was also used to define the negative binomial
variance in McCullagh and Nelder (1989), to which some authors refer when
continuing this manner of representation.

However, shortly after the publication of that text, Nelder and Lee (1992)
developed his kk system, a user-defined negative binomial macro written for
use with GenStat software. In this system he favored the direct relationship
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10 Introduction

between α and μ2 – resulting in a negative binomial variance function of μ +
αμ2. Nelder (1994) continued to prefer the direct relationship in his subsequent
writings. Still, referencing the 1989 work, a few authors have continued to use
the originally defined relationship, even as recently as Faraway (2006).

The direct parameterization of the negative binomial variance function was
first suggested by Bliss and Owen (1958) and was favored by Breslow (1984)
and Lawless (1987) in their highly influential seminal articles on the nega-
tive binomial. In 1990s, the direct relationship was used in the major software
implementations of the negative binomial: Hilbe (1993b, 1994b) for XploRe
and Stata, Greene (2006a) for LIMDEP, and Johnston (1997) for SAS. The
direct parameterization was also specified in Hilbe (1994b), Long (1997),
Cameron and Trivedi (1998), and most articles and books dealing with the sub-
ject. Recently Long and Freese (2003, 2006), Hardin and Hilbe (2001, 2007),
and a number of other recent authors have employed the direct relationship as
the preferred variance function. It is rare now to find current applications using
the older inverse parameterization.

The reason for preferring the direct relationship stems from the use of the
negative binomial in modeling overdispersed Poisson count data. Considered
in this manner, α is directly related to the amount of overdispersion in the
data. If the data are not overdispersed, i.e. the data are Poisson, then α = 0.
Increasing values of α indicate increasing amounts of overdispersion. Since a
negative binomial algorithm cannot estimate α = 0, owing to division by zero
in the estimating algorithm, values for data seen in practice typically range
from 0.01 to about 4.

Interestingly, two books have been recently published, Hoffmann (2004)
and Faraway (2006), asserting that the negative binomial is not a true general-
ized linear model. However, the GLM status of the negative binomial depends
on whether it is a member of the single-parameter exponential family of dis-
tributions. If we assume that the overdispersion parameter, α, is known and
is ancillary, resulting in what has been called a LIMQL (limited information
maximum quasi-likelihood) model (see Greene, 2003), then the negative bino-
mial is a GLM. On the other hand, if α is considered to be a parameter to
be estimated, then the model may be estimated as FIMQL (full information
maximum quasi-likelihood), but it is not strictly speaking a GLM.

Finally, it should be reiterated that Stata’s glm command, R’s glm.nb
function, and SAS’s GENMOD procedure are IRLS (iteratively reweighted
least squares)-based applications in which the negative binomial heterogeneity
parameter, α, is estimated using an external maximum likelihood mechanism,
which then inserts the resulting value into the GLM algorithm as a constant.
This procedure allows the GLM application to produce maximum likelihood
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