Probability on Graphs

Random Processes on Graphs and Lattices

GEOFFREY GRIMMETT

Statistical Laboratory University of Cambridge

> Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom

2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 44 Figures

Contents

	Prefe	ace	ix
1	Random walks on graphs		1
	1.1	Random walks and reversible Markov chains	1
	1.2	Electrical networks	3
	1.3	Flows and energy	8
	1.4	Recurrence and resistance	11
	1.5	Pólya's theorem	14
	1.6	Graph theory	16
	1.7	Exercises	18
2	Uniform spanning tree		21
	2.1	Definition	21
	2.2	Wilson's algorithm	23
	2.3	Weak limits on lattices	28
	2.4	Uniform forest	31
	2.5	Schramm–Löwner evolutions	32
	2.6	Exercises	37
3	Percolation and self-avoiding walk		39
	3.1	Percolation and phase transition	39
	3.2	Self-avoiding walks	42
	3.3	Coupled percolation	45
	3.4	Oriented percolation	45
	3.5	Exercises	48
4	Association and influence		50
	4.1	Holley inequality	50
	4.2	FKG inequality	53
	4.3	BK inequality	54
	4.4	Hoeffding inequality	56

v

vi

Contents

	4.5	Influence for product measures	58
	4.6	Proofs of influence theorems	63
	4.7	Russo's formula and sharp thresholds	75
	4.8	Exercises	78
5	Furt	her percolation	81
	5.1	Subcritical phase	81
	5.2	Supercritical phase	86
	5.3	Uniqueness of the infinite cluster	92
	5.4	Phase transition	95
	5.5	Open paths in annuli	99
	5.6	The critical probability in two dimensions	103
	5.7	Cardy's formula	110
	5.8	The critical probability via the sharp-threshold theorem	121
	5.9	Exercises	125
6	Cont	tact process	127
	6.1	Stochastic epidemics	127
	6.2	Coupling and duality	128
	6.3	Invariant measures and percolation	131
	6.4	The critical value	133
	6.5	The contact model on a tree	135
	6.6	Space-time percolation	138
	6.7	Exercises	141
7	Gibb	os states	142
	7.1	Dependency graphs	142
	7.2	Markov fields and Gibbs states	144
	7.3	Ising and Potts models	148
	7.4	Exercises	150
8	Random-cluster model		
	8.1	The random-cluster and Ising/Potts models	152
	8.2	Basic properties	155
	8.3	Infinite-volume limits and phase transition	156
	8.4	Open problems	160
	8.5	In two dimensions	163
	8.6	Random even graphs	168
	8.7	Exercises	171

		Contents	vii
9	Quantum Ising model		175
	9.1	The model	175
	9.2	Continuum random-cluster model	176
	9.3	Quantum Ising via random-cluster	179
	9.4	Long-range order	184
	9.5	Entanglement in one dimension	185
	9.6	Exercises	189
10	Interacting particle systems		190
	10.1	Introductory remarks	190
	10.2	Contact model	192
	10.3	Voter model	193
	10.4	Exclusion model	196
	10.5	Stochastic Ising model	200
	10.6	Exercises	203
11	Random graphs		205
	11.1	Erdős–Rényi graphs	205
	11.2	Giant component	206
	11.3	Independence and colouring	211
	11.4	Exercises	217
12	Lorentz gas		219
	12.1	Lorentz model	219
	12.2	The square Lorentz gas	220
	12.3	In the plane	223
	12.4	Exercises	224
	Refer	ences	226
	Index	ç	243

Preface

Within the menagerie of objects studied in contemporary probability theory, a number of related animals have attracted great interest amongst probabilists and physicists in recent years. The inspiration for many of these objects comes from physics, but the mathematical subject has taken on a life of its own, and many beautiful constructions have emerged. The overall target of these notes is to identify some of these topics, and to develop their basic theory at a level suitable for mathematics graduates.

If the two principal characters in these notes are random walk and percolation, they are only part of the rich theory of uniform spanning trees, self-avoiding walks, random networks, models for ferromagnetism and the spread of disease, and motion in random environments. This is an area that has attracted many fine scientists, by virtue, perhaps, of its special mixture of modelling and problem-solving. There remain many open problems. It is the experience of the author that these may be explained successfully to a graduate audience open to inspiration and provocation.

The material described here may be used for personal study, and as the bases of lecture courses of between 24 and 48 hours duration. Little is assumed about the mathematical background of the audience beyond some basic probability theory, but students should be willing to get their hands dirty if they are to profit. Care should be taken in the setting of examinations, since problems can be unexpectedly difficult. Successful examinations may be designed, and some help is offered through the inclusion of exercises at the ends of chapters. As an alternative to a conventional examination, students may be asked to deliver presentations on aspects and extensions of the topics studied.

Chapter 1 is devoted to the relationship between random walks (on graphs) and electrical networks. This leads to the Thomson and Rayleigh principles, and thence to a proof of Pólya's theorem. In Chapter 2, we describe Wilson's algorithm for constructing a uniform spanning tree (UST), and we discuss boundary conditions and weak limits for UST on a lattice. This chapter includes a brief introduction to Schramm–Löwner evolutions (SLE).

х

Preface

Percolation theory appears first in Chapter 3, together with a short introduction to self-avoiding walks. Correlation inequalities and other general techniques are described in Chapter 4. A special feature of this part of the book is a fairly full treatment of influence and sharp-threshold theorems for product measures, and more generally for monotone measures.

We return to the basic theory of percolation in Chapter 5, including a full account of Smirnov's proof of Cardy's formula. This is followed in Chapter 6 by a study of the contact model on lattices and trees.

Chapter 7 begins with a proof of the equivalence of Gibbs states and Markov fields, and continues with an introduction to the Ising and Potts models. Chapter 8 is an account of the random-cluster model. The quantum Ising model features in the next chapter, particularly through its relationship to a continuum random-cluster model, and the consequent analysis using stochastic geometry.

Interacting particle systems form the basis of Chapter 10. This is a large field in its own right, and little is done here beyond introductions to the contact, voter, exclusion models, and the stochastic Ising model. Chapter 11 is devoted to random graphs of Erdős–Rényi type. There are accounts of the giant cluster, and of the chromatic number via an application of Hoeffding's inequality for the tail of a martingale.

The final Chapter 12 contains one of the most notorious open problems in stochastic geometry, namely the Lorentz model (or Ehrenfest wind-tree model) on the square lattice.

These notes are based in part on courses given by the author within Part 3 of the Mathematical Tripos at Cambridge University over a period of several years. They have been prepared in this form as background material for lecture courses presented to outstanding audiences of students and professors at the 2008 PIMS–UBC Summer School in Probability, and during the programme on Statistical Mechanics at the Institut Henri Poincaré, Paris, during the last quarter of 2008. They were written in part during a visit to the Mathematics Department at UCLA (with partial support from NSF grant DMS-0301795), to which the author expresses his gratitude for the warm welcome received there, and in part during programmes at the Isaac Newton Institute and the Institut Henri Poincaré–Centre Emile Borel.

Throughout this work, pointers are included to more extensive accounts of the topics covered. The selection of references is intended to be useful rather than comprehensive.

The author thanks four artists for permission to include their work: Tom Kennedy (Fig. 2.1), Oded Schramm (Figs 2.2–2.4), Raphaël Cerf (Fig. 5.3), and Julien Dubédat (Fig. 5.18). The section on influence has benefited

CAMBRIDGE

Preface

from conversations with Rob van den Berg and Tom Liggett. Stanislav Smirnov and Wendelin Werner have consented to the inclusion of some of their neat arguments, hitherto unpublished. Several readers have proposed suggestions and corrections. Thank you, everyone!

> G. R. G. Cambridge April 2010

xi

Note added at third printing. The author is grateful to students and colleagues for their suggestions for improvements. Special thanks are due to Naser Talebizadeh Sardari, Claude Bélisle, Svante Janson, and Russell Lyons.

May 2012