Advanced Optical Wireless Communication Systems

Optical wireless communications is a dynamic area of research and development. Combining fundamental theory with a broad overview, this book is an ideal reference for anyone working in the field, as well as a valuable guide for self-study. It begins by describing important issues in optical wireless theory, including coding and modulation techniques for optical wireless, wireless optical CDMA communication systems, equalization and Markov chains in cloud channels, and optical MIMO systems, as well as explaining key issues in information theory for optical wireless channels. The next part describes unique channels that could be found in optical wireless applications, such as NLOS UV atmospheric scattering channels, underwater communication links, and a combination of hybrid RF/optical wireless systems. The final part describes applications of optical wireless technology, such as quantum encryption, visible light communication, IR links, and sensor networks, with step-by-step guidelines to help reduce design time and cost.

Shlomi Arnon is an Associate Professor at the Department of Electrical and Computer Engineering at Ben-Gurion University (BGU), Israel, and the Principal Investigator of Israel Partnership with NASA LUNAR Science Institute. In addition to research, Professor Arnon and his students work on many challenging engineering projects with emphasis on the humanitarian dimension, such as developing a system to detect human survival after earthquakes, or an infant respiration monitoring system to prevent cardiac arrest and apnea.

John R. Barry is a Professor of Telecommunications in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. He is a coauthor of Digital Communication (2004), and Iterative Timing Recovery: A Per-Survivor Approach (VDM, 2009), and he is the author of Wireless Infrared Communications (1994).

George K. Karagiannidis is an Associate Professor of Digital Communications Systems in the Electrical and Computer Engineering Department, and Head of the Telecommunications Systems and Networks Laboratory, at Aristotle University of Thessaloniki. He is co-recipient of the Best Paper Award of the Wireless Communications Symposium (WCS) in the IEEE International Conference on Communications (ICC’07).

Robert Schober is a Professor and Canada Research Chair in Wireless Communications at the University of British Columbia (UBC), Vancouver, Canada. He has received numerous awards, including best paper awards from the German Information Technology Society (ITG), the European Association for Signal, Speech and Image Processing (EURASIP), IEEE ICUWB 2006, the International Zurich Seminar on Broadband Communications, and European Wireless 2000.

Murat Uysal is an Associate Professor at Özyeğin University, Istanbul, where he leads the Communication Theory and Technologies (CT&T) Research Group. Dr. Uysal is the recipient of several awards including the NSERC Discovery Accelerator Supplement Award, University of Waterloo Engineering Research Excellence Award, and the TUBA Distinguished Young Scientist Award.
Advanced Optical Wireless Communication Systems

Edited by

SHLOMI ARNON
Ben-Gurion University (BGU), Israel

JOHN R. BARRY
Georgia Institute of Technology, USA

GEORGE K. KARAGIANNIDIS
Aristotle University of Thessaloniki, Greece

ROBERT SCHOBER
University of British Columbia (UBC), Canada

MURAT UYSAL
Özyeğin University, Turkey
Contents

List of contributors

<table>
<thead>
<tr>
<th>Part I</th>
<th>Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>Shlomi Arnon, John Barry, George Karagiannidis, Robert Schober, and Murat Uysal</td>
</tr>
</tbody>
</table>

Part II | Optical wireless communication theory

2	Coded modulation techniques for optical wireless channels	11
	Ivan B. Djordjevic	
2.1	Atmospheric turbulence channel modeling	12
2.2	Codes on graphs	13
2.3	Coded-MIMO free-space optical communication	19
2.4	Raptor codes for temporally correlated FSO channels	26
2.5	Adaptive modulation and coding (AMC) for FSO communications	29
2.6	Multidimensional coded modulation for FSO communications	35
2.7	Free-space optical OFDM communication	38
2.8	Heterogeneous optical networks (HONs)	43
2.9	Summary	48
	Acknowledgments	49
	References	49

3	Wireless optical CDMA communication systems	54
	Jawad A. Salehi, Babak M. Ghaffari, and Mehdi D. Matinfar	
3.1	Introduction	54
3.2	OCDMA system description	55
3.3	Indoor wireless optical CDMA LAN	59
3.4	Free-space optical CDMA systems	68
3.5	Modulation	75
3.6	Experimental prototypes	81
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td>84</td>
</tr>
<tr>
<td>4 Pointing error statistics</td>
<td>87</td>
</tr>
<tr>
<td>Shlomi Arnon</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>89</td>
</tr>
<tr>
<td>5 Equalization and Markov chains in cloud channel</td>
<td>90</td>
</tr>
<tr>
<td>Mohsen Kavehrad</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>5.2 Channel propagation modeling</td>
<td>92</td>
</tr>
<tr>
<td>5.3 Modeling results and eigen analyses</td>
<td>99</td>
</tr>
<tr>
<td>5.4 Equalization related issues</td>
<td>103</td>
</tr>
<tr>
<td>5.5 Summary and conclusions</td>
<td>112</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>113</td>
</tr>
<tr>
<td>References</td>
<td>113</td>
</tr>
<tr>
<td>6 Multiple-input multiple-output techniques for indoor optical wireless communications</td>
<td>116</td>
</tr>
<tr>
<td>Steve Hranilovic</td>
<td></td>
</tr>
<tr>
<td>6.1 Indoor OW MIMO channel characteristics</td>
<td>117</td>
</tr>
<tr>
<td>6.2 MIMO for diffuse OW channels</td>
<td>119</td>
</tr>
<tr>
<td>6.3 Spot-diffusing OW MIMO systems</td>
<td>123</td>
</tr>
<tr>
<td>6.4 Point-to-Point OW MIMO communications</td>
<td>127</td>
</tr>
<tr>
<td>6.5 Future directions</td>
<td>138</td>
</tr>
<tr>
<td>References</td>
<td>139</td>
</tr>
<tr>
<td>7 Channel capacity</td>
<td>146</td>
</tr>
<tr>
<td>Amos Lapidoth, Stefan M. Moser, and Michèle Wigger</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction and channel models</td>
<td>146</td>
</tr>
<tr>
<td>7.2 Capacity results</td>
<td>150</td>
</tr>
<tr>
<td>7.3 Proof techniques</td>
<td>163</td>
</tr>
<tr>
<td>References</td>
<td>172</td>
</tr>
<tr>
<td>Part III Unique channels</td>
<td>175</td>
</tr>
<tr>
<td>8 Modeling and characterization of ultraviolet scattering communication channels</td>
<td>177</td>
</tr>
<tr>
<td>Haipeng Ding, Brian M. Sadler, Gang Chen, and Zhengyuan Xu</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>8.2 Single scattering models</td>
<td>181</td>
</tr>
</tbody>
</table>
Contents

8.3 Multiple scattering models 183
8.4 NLOS UV channel measurement systems 189
8.5 Numerical and experimental results 192
8.6 Summary 198
References 199

9 Free-space optical communications underwater 201
Brandon Cochenour and Linda Mullen
9.1 Introduction: towards a link equation 201
9.2 Introduction to ocean optics 202
9.3 Channel characterization: theory 213
9.4 Experimental research in wireless optical communications underwater 218
9.5 System design for uFSO links 228
9.6 Summary 236
References 237

10 The optical wireless channel 240
Roger Green and Mark Leeson
10.1 Introduction 240
10.2 System configurations 241
10.3 Optical sources 242
10.4 Optical detectors 244
10.5 Optical filters 245
10.6 Nature of the optical wireless channel 247
10.7 Interference sources 248
10.8 Impact of interference on BER 251
10.9 Channel impulse response 253
10.10 Hardware aspects of the receiver-amplifier in the indoor channel environment 255
10.11 Modulation schemes for optical wireless 263
10.12 Optics for optical wireless 267
10.13 Concluding remarks 268
References 269

11 Hybrid RF/FSO communications 273
Nick Letzepis and Albert Guillén i Fàbregas
11.1 Introduction 273
11.2 Channel model 275
11.3 Information-theoretic preliminaries 281
11.4 Uniform power allocation 287
11.5 Power allocation 292
11.6 Conclusions and summary 295
Contents

Appendix A Kullback–Leibler divergence between Poisson and Gaussian distributions 297
Appendix B Derivative of the mutual information for discrete-input Poisson channels 297
Acknowledgments 299
References 299

Part IV Applications 303

12 Quantum key distribution 305
 Rupert Ursin, Nathan Langford and Andreas Poppe
 12.1 Motivation 305
 12.2 Security considerations of QKD 306
 12.3 QKD protocols 308
 12.4 Technical implementation of a free-space setup 312
 12.5 QKD networks 319
 References 326

13 Optical modulating retro-reflectors 328
 William Rabinovich
 13.1 Introduction 328
 13.2 Modulating retro-reflector link budgets 330
 13.3 The optical retro-reflector 332
 13.4 The optical modulator 334
 13.5 Modulating retro-reflector applications and field demonstrations 341
 13.6 Conclusion 347
 References 347

14 Visible-light communications 351
 Kang Tae-Gyu
 14.1 VLC principle 351
 14.2 VLC standards 354
 14.3 VLC research and development 359
 14.4 VLC applications 361
 14.5 Future work 367
 References 367

15 Optical wireless in sensor networks 369
 Dominic C. O’Brien and Sashigaran Sivathasan
 15.1 Introduction 369
 15.2 Free-space optical (FSO) sensor network 371
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3 Radio frequency/Free-space optical (RF/FSO) sensor network system</td>
<td>378</td>
</tr>
<tr>
<td>15.4 Conclusions</td>
<td>383</td>
</tr>
<tr>
<td>15.5 Acknowledgments</td>
<td>384</td>
</tr>
<tr>
<td>References</td>
<td>384</td>
</tr>
</tbody>
</table>

Index

388
Contributors

Shlomi Arnon
Ben Gurion University of the Negev, Israel

John R. Barry
Georgia Institute of Technology

Gang Chen
University of California

Brandon Cochenour
Naval Air Systems Command (NAVAIR), USA

Haipeng Ding
University of California

Ivan Djordjevic
University of Arizona

Babak M. Ghaffari
Sharif University of Technology, Iran

Roger Green
University of Warwick

Steve Hranilovic
McMaster University, Canada

Albert G. i Fàbregas
University of Cambridge

Mohsen Kavehrad
Pennsylvania State University

George K. Karagiannidis
Aristotle University of Thessaloniki, Greece

Nathan Langford
University of Oxford

Amos Lapidoth
ETH Zurich
List of contributors

Nick Letzepis
Defence Science and Technology Organisation, Australia

Mark Leeson
University of Warwick

Mehdi D. Matinfar
Sharif University of Technology, Iran

Stefan M. Moser
National Chiao Tung University, Taiwan

Linda Mullen
Naval Air Systems Command (NAVAIR), USA

Dominic O’Brien
University of Oxford

Andreas Poppe
AIT Austrian Institute of Technology GmbH

William Rabinovich
US Naval Research Laboratory

Brian M. Sadler
Army Research Laboratory, USA

Jawad A. Salehi
Sharif University of Technology, Iran

Robert Schober
University of British Columbia, Canada

Sashigaran Sivathasan
Curtin University of Technology, Malaysia

Rupert Ursin
Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences

Kang Tae-Gyu
Electronics and Telecommunications Research Institute (ETRI), South Korea

Murat Uysal
Özyeğin University, Turkey

Michèle Wigger
Télécom ParisTech, France

Zhengyuan Xu
University of California