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Preface

This monograph is a systematic treatise on period domains over finite and
over p-adic fields. The theory we present here has developed over the past
fifteen years. Part of it has already appeared in various research articles or
announcements, sometimes without detailed proofs. Our goal here is to present
the theory as a whole and to provide complete proofs of the basics of the theory,
so that these research articles can be accessed more easily. As it turned out,
when working out the details, we had to change the very foundations of the
theory quite a bit in some places, especially to accomodate isocrystals over
non-algebraically closed fields, and also isocrystals with G-structure. Our hope
is that our book can serve as the basis of future research in this exciting area.

Period domains over p-adic fields arose historically at the confluence of two
theories: on the one hand, of Fontaine’s theory [80] of the “mysterious func-
tor” conjectured by Grothendieck, which relates p-adic Galois representations
of p-adic local fields and filtered isocrystals; on the other hand, of the the-
ory of formal moduli spaces of p-divisible groups and their associated period
maps [183]. Via the latter theory, they are naturally related to local Langlands
correspondences between f{-adic representations of the Galois groups of p-
adic fields and smooth representations of p-adic Lie groups. In recent times,
it became apparent [34, 176] that, via the former theory, period domains also
show up in connection with the conjectural p-adic Langlands program relat-
ing p-adic representations of the Galois groups of p-adic fields, and p-adic
representations of p-adic Lie groups.

There are at least three possible motivations for investigating the period do-
mains of the title. First of all, they are somehow a natural analogue of the
Griffiths period domains in Hodge theory. This is true in two respects. Con-
ceptually, a Griffiths period domain is a moduli space for Hodge structures of
a certain type; similarly, a p-adic period domain is a moduli space for “weakly
admissible filtered isocrystals,” which are the p-adic analogues of Hodge struc-
tures in Fontaine’s theory. Technically, p-adic period domains are defined by

vii
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viii Preface

a semi-stability formalism; the same is true for Griffiths period domains, al-
though their historical definition is different.

The second motivation is of an arithmetic nature and follows from the rela-
tions between Galois representations and p-adic Hodge structures. More pre-
cisely, the universal p-adic Hodge structure above a p-adic period domain
should conjecturally provide us with a “universal” relative crystalline Galois
representation (of a certain type). However, making precise this hope is a very
difficult problem of current interest, which lies beyond the scope of this mono-
graph (see the last chapter).

The third motivation was our guide in this monograph. It comes from the
formalism used in this theory and its analogies with other topics in algebraic
geometry. As already mentioned, the “weakly admissible filtered isocrystals”
may be seen as semi-stable objects in the category of filtered isocrystals, once
the latter is endowed with a suitable “slope function.” Hence there is a di-
rect analogy with the category of vector bundles on a Riemann surface, when
endowed with the usual slope function. This analogy has been very fruitful,
since many of the “classical” concepts of the theory of vector bundles, such
as the Harder—Narasimhan filtration or the GIT criteria for semi-stability, turn
out to have natural analogues in the context of filtered isocrystals. Even the
theory of G-bundles, i.e., torsors over a reductive group G, has an analogue in
the context of filtered isocrystals. This comes from the fact that the category
of isocrystals is tannakian, and that the semi-stability condition is compatible
with tensor products. In fact, we could have replaced the category of isocrys-
tals by any tannakian category. Choosing the easiest one, namely that of vector
spaces over a field, we get rid of the p-adic nature of isocrystals and obtain a
theory over any abstract field. It turns out that when the field is finite, there is a
moduli space for “semi-stable filtered vector spaces” of a fixed type, and such
moduli spaces are the “period domains over finite fields” of the title. Although
they are no longer related to any type of Hodge theory, their study remains a
good way of approaching that of their p-adic brothers, avoiding most of the
intricate technicalities of the p-adic case. For example, when studying period
domains over finite fields, only basic algebraic geometry is needed, while in the
p-adic case, rigid-analytic geometry is required. Therefore, we like to consider
the first two parts of this book as a pedagogical introduction to the formalism
of slopes, semi-stability, and related concepts, in the most elementary context
where it appears. These first two parts should be accessible to any graduate
student with a basic background in algebraic geometry and algebraic group
theory.

In the Introduction following this Preface, we give more details on the back-
ground of this book and also give a brief description of its contents. Through-
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out the text, there are numerous examples (which one may also regard as ex-
ercises). At the end of each section there are remarks on open questions, on
history, and directions to the literature.

We are happy to acknowledge the important contributions of G. Faltings,
J.-M. Fontaine, U. Hartl, R. Kottwitz, B. Totaro and Th. Zink to the theory pre-
sented here. We also thank M. Cabanes, U. Gortz, M. Harris, X. He, R. Huber,
L. Lafforgue, G. Laumon, P. Schneider and A. Strohmaier for helpful discus-
sions. We gave courses on this material at the universities of Wuppertal, Bonn,
Leipzig and Paris. We are grateful for the feedback from the audiences of these
courses.
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Introduction

In this Introduction we give a brief description of the background of this mono-
graph, then explain its scope, and finally give an overview of its contents.

Background 1: Classical Hodge theory The concept of a period domain was
created by Griffiths in his work on periods of integrals on algebraic varieties
over the field of complex numbers [97]. Let us first explain Griffiths’ construc-
tion, cf. [96].

Let Hg be a finite-dimensional R-vector space and let Hc = Hr ® C. We also
fix an integer n and a collection of non-negative integers {h”?},, , which satisfy
hP? = h9P and h?? # 0 only if p+q = n, and such that } h’? = dim Hg. There is
a natural structure of a complex manifold on the set of all Hodge structures of
weight n on Hg, with h7? as its Hodge numbers. This comes about as follows.

Let # be the set of all decreasing filtrations of subspaces

...C7—'p+1cfpcy—'pflc...ch’

such that dimF7 = 3., K= Then ¥ forms in the obvious way a partial flag
variety, and as such has the structure of a smooth projective algebraic variety.
The group GL(H¢) acts algebraically and transitively on #. Consider the subset
F° of filtrations F* which satisfy

He = FP o Frr+l  forevery p.

Then #° is an open subset of F, and is the parameter space of Hodge structures
on Hy of the given type. Indeed, a Hodge structure

He = ED HP | HPA = HY (0.1)
Pa
defines the filtration F* in #° given by

Fr=PH"

i>p

Xi
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Conversely, if F° is a point of F°, then #* corresponds to the Hodge structure
(0.1) with
HP = 57 N
For technical reasons, one pays special attention to polarized Hodge struc-
tures. Let ¥ be a non-degenerate bilinear form on Hg which is symmetric when

n is even, and skew-symmetric when 7 is odd. Let Fy be the subset of all those
filtrations #* in # which satisfy

W(FP, FP*y = 0, forevery p .
Then ¥ is a closed subvariety of . Let
G = Aut(Hg, V)

be the automorphism group of the form P, i.e., either the orthogonal or the
symplectic group. The complex Lie group G(C) acts transitively on Fy. In
particular, Fy is a smooth projective variety. Consider the subset ¥y, of filtra-
tions ¥ in F° N Fy which satisfy

Y(Cv,v) >0forve H-, v#0.

Here C = Cg- is the Weil operator C : Hc — H¢ defined in terms of the
Hodge structure corresponding to ¥ ° by

Cv=i""%,ve H.

Then ¥y parametrizes all Hodge structures on Hy which are polarized by ¥
and have the 7?7 as Hodge numbers. The subset Fy is open in Fy, and is
acted on transitively by G(R). Fixing a base point in ¥y we therefore have
identifications

Fy c Fu

GR)/V C G(C)/P©),

where P is a parabolic subgroup of G¢, and where the subgroup V = P(C) N
G(R) turns out to be compact.

It is Fy that is the prototype of a classical period domain, i.e., a period
domain in the sense of Griffiths. The name arises from the connection with
families of Hodge structures defined by families of algebraic varieties. Let
f : X — § be a polarized smooth family of projective algebraic varieties
parametrized by a complex variety S. Then for each n, the nth primitive co-
homology groups of the fibers of f form a local system PR”f.(R). Over the
universal covering S of S, this local system can be trivialized. Choosing such
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a trivialization, and associating to a point § € § with image s € S the Hodge
structure on PH"(X;, R), we obtain the period morphism

0: 8§ —F°. 0.2)
Here #° = ¥y, is the period space relative to the choice of the polarization, of
n, of the appropriate Hodge numbers /79, and of the trivialization of PR" f.R
over S.

Griffiths and Schmid made a deep study of the differential-geometric prop-
erties of period domains, cf. [97]. For any F* € ¥°, the Lie algebra g of G
inherits a real Hodge structure of weight O from End(Hy), and the Lie algebra
p of the parabolic stabilizer P of ¥° is the Oth step of the associated Hodge
filtration. The holomorphic tangent space of ¥° at the point corresponding
to F° is naturally isomorphic to g/p. The subspace p & g b1/p of g/p is the
fiber at #° of a G(C)-invariant holomorphic subbundle T, of the holomorphic
tangent bundle 7, the horizontal tangent subbundle [194]. It is a fundamental
fact that this subbundle has negative holomorphic sectional curvature bounded
away from zero, for a suitable G(C)-invariant hermitian form on 7. This cir-
cumstance allows the application of a version of the Schwartz Lemma. The
relevance of this result comes from the fact that any period map ¢ as in (0.2) is
horizontal, i.e., dp(Ts) C T,. These facts have important implications for the
local systems PR" f.R defined by families of algebraic varieties (e.g. the proof
of Borel [52] of the monodromy theorem).

Also, Schmid [195] studied the L2-cohomology of the restriction of homo-
geneous line bundles to period domains, and identified the representations of
G(R) afforded by them. This gives a cohomological realization of discrete se-
ries representations of G(R).

A striking special case of Griffiths’ construction arises from real Hodge
structures of type {(0, —1), (=1, 0)}. These can be identified with complex struc-
tures on Hg. Choosing a polarization ¥, the corresponding period domain %y
can be identified with the union of the upper and the lower Siegel halfspaces.
In this case, taking for S the moduli space of polarized abelian varieties of
type ¥, the map ¢ in (0.2) is an isomorphism. In general, the map ¢ is not
even a local isomorphism, since the image of dy lies in the horizontal tangent
subbundle.

One can formalize Griffiths’ construction following Deligne [52]. Recall
that a Hodge structure on Hy corresponds to a homomorphism 2 : S —
GL(Hg), where

S = RCSC/R(Gm)

is the Weil restriction of the multiplicative group. Let G be a connected reduc-
tive group over R. A homomorphism 4 : S — G is called polarizable if it
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factors through a maximal torus in G which is compact modulo center. Then
the period domain associated to the conjugacy class of a polarizable homomor-
phism 4 : S — G is the set (G, h)° of conjugates under G(R) of h. Let h; be
the composite homomorphism

(1id)
(G — Rescr(Gr)e = (Gy)e X (Gy)c — Ge -

Any conjugate of #; under G(C) defines a filtration on the category of repre-
sentations of G. The set (G, h) of these filtrations can be identified with a
generalized flag variety of Gc. We obtain an open embedding

F(G,h)° — F(G,h),

and for suitable choices of (G, h) one obtains the examples discussed previ-
ously.

In Griffiths’ presentation of the theory, the monodromy group acting on
F (G, h)° plays an important role, and the desire to form the quotient of ¥ (G, h)°
by its action is a major reason for considering polarized Hodge structures. Here
we will suppress this aspect of the theory, since there is so far no p-adic ana-
logue of these quotients.

Background 2: p-adic Hodge structures The p-adic analogue of a Hodge
structure is a weakly admissible filtered isocrystal, as defined by Fontaine [80].
Let L be a perfect field of characteristic p > 0, and let Ky = Quot(W(L)) be
the fraction field of its ring of Witt vectors. We denote by o the automorphism
of K, induced by the Frobenius automorphism of L. An isocrystal over L is a
finite-dimensional Ky-vector space V, equipped with a bijective o-linear map
® : V — V. Let K be a finite field extension of K. A filtered isocrystal
(V,®,F°) over K is an isocrystal (V, ®) over L equipped with a (decreasing,
exhaustive and separating) Z-filtration #* of the K-vector space V ®k, K. A
filtered isocrystal over K is called weakly admissible if

ZX xdimgri (V' ®, K) < orddet(® | V')

for any sub-isocrystal V’ of V, with equality for V' = V.

Such a structure arises for example from an abelian variety over K with good
reduction. In this case (V, @) is the rational Dieudonné module of its special
fiber, and the filtration ¥° is given by the Hodge filtration of its generic fiber
(via the comparison isomorphism with the DeRham cohomology) and has only
two jumps, at x = 0 and at x = 1. Something similar is true of a p-divisible
group over K with good reduction. More generally, a filtered isocrystal arises
from the ith cohomology group of a smooth projective variety over K with
good reduction. In this case, (V, @) is given by the ith crystalline cohomology
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group of the special fiber and again #° is given as the Hodge filtration of its
generic fiber, which may have more than two jumps.

Note that in the previous example the extension K/Kj is totally ramified.
According to Colmez and Fontaine [44], if the finite extension K/Kj is totally
ramified, the category of weakly admissible filtered isocrystals over K is equiv-
alent to the category of crystalline p-adic Galois representations of Gal(K/K)
under the mysterious functor conjectured by Grothendieck and constructed by
Fontaine [80]. In the example of an abelian variety over K with good reduc-
tion, this Galois representation is given by the rational p-adic Tate module of
its generic fiber, as proved by Breuil [32].

The p-adic analogue of a period domain arises by fixing the isocrystal (V, ®@)
and by varying the filtration #°. More precisely, we fix a function g : Z —
Zso with Y, g(x) = dim V, and consider the partial flag variety ¥ = F(V, g) of
Z-filtrations 7 *° of type g, i.e., such that

dim gr-(V) = g(x) , VxeZ.

Then ¥ is a smooth projective variety over Q,, with a transitive action of
GL(V). The locus inside F corresponding to those filtrations ¥* such that
(V,®,7°) is weakly admissible is a subset F"* of ¥ ®q, Ko, which is an
admissible open in the sense of rigid-analytic geometry [183]. More precisely,
F¥* is the complement of a p-adic family of Zariski-closed subvarieties of
¥ ®q, Kp.

More generally, and imitating Deligne’s formalization of the classical period
domains, one may perform this construction starting with any triple (G, b, u).
Here G is a connected reductive group over Q,, and b is an element of G(Kj)
and p : (Gn)g, — Gg, is a one-parameter subgroup defined over an alge-
braic closure Ky of Ky. Then p and any conjugate of u defines a filtration on
the category of representations of G and hence defines a partial flag variety
¥ (G, ) defined over a finite extension E of Q, contained in Ko, the local
Shimura field associated to (G, ). Let Ky = E.K,. Then the period domain
(G, b, W)™ is an admissible open rigid-analytic subset of F(G, u) ®¢ Kp. Its
points parametrize weakly admissible triples (G, b, '), where (G, b) is fixed
and y’ varies in (G, u). According to [82], if G is quasi-split and L alge-
braically closed, we have F(G, b, )™ # 0 if and only if there is an inequality
v < u between the Newton vector v of the isocrystal (V, ®) and the Hodge
vector of .

The best-known example of a p-adic period domain is the Drinfeld halfspace
[71]. Let V be a Qp-vector space of dimension n, and consider the trivial
isocrystal (V, @) = (Vo ®g, Ko, idy, ®c). Let g : Z — Zy be the function with

gmn-1)=1, g(-1)=n-1, gx)=0 forx#n—-1,-1.
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In this case F(V,g) = P(V) =~ P"! is the projective space of lines in V and
F(V, )" is the space Q(V) = Q" of all lines not contained in any Q),-rational
hyperplane in V. Drinfeld [71] proved that Q" is the generic fiber of an adic for-
mal scheme over Spf W(L) which is the parameter space of certain p-divisible
groups of a specific type (special formal Op-modules).

In [183], this is generalized to other families of p-divisible groups, of (EL)-
or of (PEL)-type. In this more general case, one obtains a formal scheme
M over Spf Ok, (no more adic in general) and a period morphism from the
generic fiber of M to a period domain. This period morphism is an étale rigid-
analytic morphism, but in contrast to the Drinfeld case, it is no longer an iso-
morphism. In the general case, it is conjectured that there is an open subset
Vi (G, b, 1)* (analytic in the sense of Berkovich) of the analytic space associ-
ated to ¢(G, b, )", the admissible subset, and a local system of p-adic vector
spaces over F(G, b, )" such that the fiber in each point F* corresponds as a
p-adic Galois representation with G-structure under the Fontaine functor to the
filtered isocrystal with G-structure (G, b, ¥°) (this more precise version of the
conjecture in [183] is due to Hartl [108]).

Let

J(Q,) = {g € G(Ky) | gba(g)™" = b}

be the automorphism group of the isocrystal with G-structure (G, b). The group
J(Q,) is the group of Q,-rational points of an algebraic group over Q,,. It acts
by naturality on (G, 1) ®x Ko preserving the period space F(G, b, ;)™ The
action of J(Q)) also preserves ¥ (G, b, )" and this action is lifted to the con-
jectural local system mentioned above. Imposing level structures on the local
system, one obtains a projective system of rigid spaces mapping by surjec-
tive étale morphisms to 7—"(G, b,u)*. The group J(Q)) acts on each member of
this projective system, and the group G(Q,) acts as Hecke correspondences on
the projective system as a whole. From a suitable version of £-adic cohomol-
ogy in the rigid context, one deduces a Q,-vector space with a triple action of
G(Qp), and J(Q)), and the Weil subgroup of Gal(E/E). There is a conjecture
by Kottwitz [185], generalizing conjectures of Carayol [37] pertaining to the
Drinfeld case and the Lubin—Tate case, which describes the precise kind of
Langlands correspondence between the representations of these three groups
that this triple representation induces (on the discrete Langlands parameters,
for more general parameters, cf. Harris [106]). In the Drinfeld and the Lubin—
Tate cases, in which the respective period domains are Q", resp. P*!, and in
which case the projective system is known to exist, these conjectures have been
completely proved very recently, thanks to the results of Boyer, Dat, Faltings,
Fargues, and Harris and Taylor.
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Background 3: Semi-stability The basic motivation for the present mono-
graph is Faltings’ observation [73] that weak admissibility can be viewed as a
semi-stability condition. Let (V, @, #*) be a filtered isocrystal over K. For any
R-filtration ¥ ° of V ®k, K, let

degy(V) = )" xdim gri-(V &k, K) .
Let G* be the slope filtration of V, i.e., the Q-filtration

where V = P V,, is the slope decomposition of the isocrystal (V, ). Its degree
is given by degg(V) = — ord det(®|V). Then (V, @, F°) is called semi-stable if

1 ! 04
m(degf(v ) +degg (V")) <

for any sub-isocrystal V' of V. Hence (V, @, *) is weakly admissible iff it is
semi-stable and if in addition the RHS of (0.3) is equal to zero.

The semi-stability condition is much more flexible than the weak admissi-
bility condition. In particular, it lends itself to analogues in pure linear algebra
and hence also to period domains in this pure linear algebra context. More pre-
cisely, let V be a finite-dimensional vector space over a field k. Let #° be an
R-filtration on V ®; K, where K is a field extension of k. Then (V, #°*) is called
semi-stable if

1
3 V( degs(V) + degg(V)) (0.3)

degs (V') <

dim v/ dimy & V)
for all k-subspaces V’ of V. Here on the LHS, the R-filtration ¥ on V' ®; K is
the one induced by ¥ °, and the fractions on both sides are called the slopes of
V, resp. V'.

We explicitly note that if L = F, then a filtered isocrystal becomes an object
of linear algebra. In particular, if @ is the identity automorphism of V, then
a filtered isocrystal over K is nothing other than an object (V,F°) as above
(relative to k = Q). It is remarkable that the first kind of object mentioned
in Background 1 above can also be phrased in these terms. In fact, by Pink
[177], a Hodge structure of weight n on the R-vector space Hy is the same as
a semi-stable Z-filtration ¥° on H¢ of slope n/2.

The filtrations on V ®, K of a fixed type are parametrized by the K-valued
points of a partial flag variety # over k. If k is a finite field, there is a Zariski-
open subset ¥ of F with K-valued points equal to the set of semi-stable
pairs (V, F*) as above. If k is a non-archimedean local field, the set F*° is an
admissible open rigid-analytic subset of . These are the prototypes of the pe-
riod domains in the title. In this context, the theory is stripped of its arithmetic
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Xviii Introduction

content, and becomes geometric and more elementary. In this monograph we
study the geometry of period domains in this context, and address the ques-
tion of determining their cohomology. We regard the theory developed here as
somewhat preliminary to the deep arithmetic questions outlined above.

The scope of this monograph In this monograph we study period domains
in the context of semi-stability, in its variants of linear algebra, as well as
of the isocrystal variants. Our main purpose is to bring out the analogy be-
tween period domains and the moduli spaces of vector bundles on Riemann
surfaces [181]. We are especially interested in the geometry of period domains,
in particular in determining their cohomology and other topological invariants.
Among the topics treated we mention the following.

e The tensor product theorem of Faltings and Totaro, which states that the
tensor product of two semi-stable pairs (V, #°) and (V’, ¥'°) is again semi-
stable (in the isocrystals context this was conjectured by Fontaine).

o The machinery of the Harder—Narasimhan filtration, which presents a pair
(V, ¥*) as a successive extension of semi-stable pairs in a definite way.

e The relation of the concept of semi-stability of (V, ¥ *) to the semi-stability
concept in Geometric Invariant Theory (this is due in a special case to van
der Put and Voskuil, and in general to Totaro, confirming a conjecture of
Rapoport and Zink).

e The structure of the Harder—Narasimhan stratification of the partial flag va-
riety, which reveals an interesting recursive structure of the boundary of the
period domain in terms of period domains of smaller dimension.

e The ¢-adic cohomology with compact supports of period domains (in the
case of the Drinfeld halfspace Q", this is due to Drinfeld for n = 2 and to
Schneider and Stuhler, and to Dat, for arbitrary n, whereas the cohomology
complex is due to Dat; the case of a general period domain is due to Orlik,
and the determination of the Euler—Poincaré characteristic, to Kottwitz and
Rapoport).

o The relation between period domains over the field FF; with one element and
thin Bruhat cells and the fibers of the moment map. Here, for the variant of
the semi-stability notion over F,, instead of testing all k-rational subspaces
of V, one tests all coordinate subspaces of V with respect to a fixed basis of
V. In this variant k can be an arbitrary field.

e The generalization of the theory from GL(V) to arbitrary reductive groups.

e A systematic treatment of period domains including the case where L is
perfect, but not necessarily algebraically closed.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197694
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19769-4 - Period Domains over Finite and p-adic Fields
Jean-Francois Dat, Sascha Orlik and Michael Rapoport
Frontmatter

More information

Introduction XiX

The structure of this monograph The monograph consists of four parts. In
the first part (Chapters I-III) we present the theory in its most elementary form.
We prove the tensor product theorem in its various variants, and develop the
Harder—Narasimhan machinery. We introduce period domains for GL, over
a finite field and over Fy, i.e., in those cases that lead to Zariski-open sub-
sets of generalized flag varieties. We study their stratifications by the Harder—
Narasimhan types, resp. by their Harder—Narasimhan polygons. Also, we ad-
dress the question of determining the cohomology of period domains in this
context.

In the second part (Chapters V-VII) the theory in the first part is generalized
to the case of an arbitrary reductive group G instead of GL,,. Again, the period
domains encountered here are Zariski-open subsets of generalized flag vari-
eties (associated to G). This part is preceded by an interlude on the Tannaka
formalism in the context of algebraic groups (Chapter I'V).

In the third part (Chapters VIII-X) we pass to the case of a p-adic local
field as a base field. In this case we obtain period domains which are admissi-
ble rigid-analytic open subsets of generalized flag varieties. They parametrize
semi-stable filtered isocrystals. The theory is analogous to that in the first two
parts, but is considerably more difficult. In this sense, the first two parts of the
monograph may be considered as toy models for the objects in the third part.
On the other hand, the theory developed in this last part can be viewed to some
degree as a warm-up for the study of the arithmetically significant covering
spaces mentioned above.

In a final part (Chapter XI) we give some complements, and review some of
the recent work in the area.

Content We now give a chapter-by-chapter description of the contents of the
book.

Chapter I is basic for the whole book. In Section 1 we give the general con-
cepts on which the theory rests. In Section 2 we prove the tensor product the-
orem of Faltings and Totaro; our proof is essentially Totaro’s. In Section 3 we
introduce the Harder—Narasimhan filtration; we follow Faltings in numbering
its filtration steps by the slopes.

Chapter II introduces the period domains attached to a vector space and
a dominant co-weight. The basic definition is given in Section 1. In Section
2 we characterize period domains through the Hilbert—-Mumford inequality
from Geometric Invariant Theory. Section 3 explains the stratification of the
generalized flag variety according to Harder—Narasimhan types, resp. Harder—
Narasimhan vectors. The subtle difference between these two stratifications —
one being a refinement of the other — is a novel phenomenon that does not occur
for the space of vector bundles on a Riemann surface. In Section 4 we analyze
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period domains “over F,,” and connect our theory to the theory of Gelfand—
Goresky—MacPherson—Serganova of thin Schubert cells and the moment map.

Chapter IIT addresses the problem of determining the £-adic cohomology of
period domains. Section 1 is devoted to an exposition of the Langlands Lemma
from the theory of Eisenstein series, in which we follow closely Laumon [149]
and Labesse [141]. In Section 2 we analyze the representations of GL,(FF,)
which contain a fixed vector under the Borel subgroup. In particular, we prove
by reduction to the representation theory of the symmetric group that the in-
duced representations ig and the generalized Steinberg representations vg form
a basis of their Grothendieck group, as P varies over the associate classes of
parabolic subgroups. We give the change of basis matrix between these two
bases in terms of a complex which is similar to, but in general different from,
the Solomon-Tits complex. This is based on a remarkable distributivity prop-
erty of the representations ig, due to Cabanes. This also leads to the existence
of a basis of the group algebra of the Weyl group compatible with the sub-
spaces i; analogous to iIG) (however, we strongly believe that it is essentially
impossible to give this basis explicitly!). In Section 3 we explain the recursion
relation for the Euler—Poincaré characteristic of a period domain using stratifi-
cation by Harder—Narasimhan types, and we resolve the recursion relation by
using the Langlands Lemma. We also explain how, by expressing the result in
terms of generalized Steinberg representations, one is led to a formula which
gives the cohomology of period domains degree by degree (i.e., not merely
the Euler—Poincaré characteristic), and deduce from this a precise vanishing
theorem in ¢-adic cohomology.

Chapter IV gives a brief exposition of some facts from the tannakian formal-
ism that we will need later. We concentrate on the theory of filtrations of fiber
functors, and show in particular how a filtration of the natural fiber functor on
the representation category of a reductive group can be transferred naturally to
any parabolic subgroup.

Chapter V transposes the theory of Chapter I, §1 to general reductive groups.
There are two approaches, one externally through the tannakian formalism, and
one internally through group theory — and the main point here is to show that
both approaches give the same result. This is done in Sections 1 and 2. Section
3 then transfers the Harder—Narasimhan filtration to this context. We note that
the external approach uses the Mumford conjecture from Geometric Invariant
Theory (=Haboush’s Theorem).

Chapter VI is the analogue of Chapter II for general reductive groups over
finite fields. Section 1 defines period domains in this context. Section 2 relates
this definition to the definition in terms of Geometric Invariant Theory. This is
based on the concept of an invariant inner product on a reductive group due to
Totaro, and the proof here is a simplification of Totaro’s original proof. Section
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3 analyzes the Harder—Narasimhan stratification, and in particular the closure
relation among the strata. This is based on an analysis of the structure of the
partially ordered uniquely divisible monoid of conjugacy classes of Q-1-PS of
G.

Chapter VII starts by introducing the induced representations ig and gen-
eralized Steinberg representations vg for general reductive groups over finite
fields. It turns out that these generate in general a proper subgroup of the natu-
ral Grothendieck group, but that as in the case of GL,, a basis of this subgroup
is given by the ig and also by vg, as P ranges over the associate classes of
parabolic subgroups. The proof of this fact is based on the observation that
any finite group of Lie type has elliptic regular semi-simple elements (Lusztig
informed us that this was known to him previously, but our proof here seems
to be the first published one). Section 2 then is the analogue of Chapter III, §3.

Chapter VIII starts with recalling the theory of isocrystals, in particular
stressing the special nature of “split semi-simple isocrystals.” Then the con-
cepts of semi-stability and of weak admissibility for isocrystals are introduced.
Period domains in this new context are defined in Section 2. There are two
major differences in our exposition as compared with [183]. First of all, we
chose to present the theory in the context of Berkovich spaces instead of rigid-
analytic varieties. This is dictated to us through our cohomology calculation
in Chapter X, but also facilitates the comparison with the admissible set men-
tioned above. Second, we deal with isocrystals over arbitrary perfect fields. We
also give in this section a criterion for when a period domain is non-empty (this
question is vacuous in the finite field case). Section 3 introduces in this context
the Harder—Narasimhan stratification; in the most general case it is an open
problem to determine the set of non-empty strata. Also, the relation between
the stratifications by Harder—Narasimhan type and by Harder—Narasimhan vec-
tor is difficult outside the split semi-simple case. Section 4 describes period
domains for isocrystals in terms of Geometric Invariant Theory, in the split
semi-simple case. Section 5 relates isocrystals with an action by a finite exten-
sion of Q, to Kottwitz’s o-F-spaces, elaborating on a remark in [135].

Chapter IX is technically the most demanding. In Section 1 we introduce the
concept of an isocrystal with structure in an arbitrary Tannaka category over
Qp. The best-known example is the case when this Tannaka category is the
representation category of an algebraic group over Q,. However, more gen-
eral tannakian categories are in fact needed in order to deal with the Harder—
Narasimhan formalism, even if one starts with a G-isocrystal in the usual sense.
In order to deal effectively with this concept, we introduce the notion of an
augmented group scheme over the Tannaka category of isocrystals over L.
In Section 2 we use this formalism to transpose semi-stability and Harder—
Narasimhan filtration to this context. In Section 3 we analyze the automor-
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phism group of an isocrystal with structure in a tannakian category. In Section
4 we generalize to this context the analysis of the space of conjugacy classes
of Q-1-PS from Chapter VI, §3. In Section 5 we introduce period domains.
A technically important remark is that we may change an augmented group
scheme by a “weak isomorphism” without changing the period domain. In
Section 6 we analyze the Harder—Narasimhan stratification in this context. The
situation in general is quite complicated, but it simplifies in the split semi-
simple case. The final Section 7 is devoted to the operation of restriction of
scalars in this context.

Chapter X is devoted to the cohomology of period domains attached to ba-
sic isocrystals. In Section 1 we discuss generalized Steinberg representations
in the p-adic case. The situation here is different from the finite field case,
and in fact well-known and much simpler. Section 2 then treats the cohomol-
ogy of period domains. Here we use basic facts on the £-adic cohomology of
Berkovich spaces, which we treat in an axiomatic way. By changing an aug-
mented group scheme within its weak isomorphism class, we are reduced to
a situation which is essentially identical to that over a finite field. Hence the
same proof as in Chapter VII, §2 yields a result that is very similar to the one
in the linear algebra context.

Chapter XI has a more informal character. In Section 1 we discuss the “fun-
damental complex,” the main ingredient of the determination of the cohomol-
ogy of period domains (and not merely their Euler—Poincaré characteristic).
The geometry behind this complex also enters into Section 2, where we com-
pare period domains over a finite field to the other class of algebraic varieties
attached to finite groups of Lie type, the Deligne—Lusztig varieties. In partic-
ular, we compare properties like affineness and simple connectivity for both
classes of varieties. In Section 3 we discuss some special features of the Drin-
feld space. As already pointed out in [186], this period domain is quite atypical
of period domains in general, but the comparison is useful to keep in mind. Sec-
tion 3 concerns the conjectural local system of Q,-vector spaces on an open
subset of a period domain, and discusses the results of Faltings [75] and Hartl
[109] concerning them in the weight 1 case. In Section 4 we discuss the results
of Dat [48] concerning the cohomology complex of the Drinfeld space. At
least the splitting theorem holds for general period domains, but whether one
can extend the main results of [48] to general period domains is an unresolved
question.
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