
1 The essence of wavemotion

1.1 Introduction

The physics of waves is too often presented only in a few rather straightforward
and sometimes uninspiring contexts: the motion of strings, sound, light and so
on. Students may be led to regard the topic with disdain; and they may be left
with some crucial misconceptions, such as that all waves are sinusoidal. Wave
physics may hence be considered an old-fashioned field with little relevance
to the more modern, exciting areas of quantum physics, nanotechnology and
cosmology. Yet there is plenty to find interesting just in classical and modern
optics and the physics of musical instruments; and wave phenomena prove to
be central to most of the fascinating and newly emerging branches of both
fundamental and applied physics.

Most aspects of physics may be viewed from two perspectives: one, named
after Lagrange, addresses particles, while the other, due to Euler, considers
fields. We may, for example, establish the electromagnetic properties of matter
by considering the Coulomb forces among all the constituent charged particles;
or we may describe the material’s bulk response to a field and tackle the
problem that way. This duality pervades most areas of physics and, while one
of the alternatives often proves vastly more convenient than the other, the two
are ultimately quite consistent, equivalent viewpoints.

When we extend our analysis to dynamic systems, the particle approach
becomes a form of ‘kinetics’ or ballistics, and changes in the field description
are manifest as waves. So, when we consider the physics of waves, we’re
really addressing the general subject of time-dependent field theory. Stringed
and wind instruments and so on are merely particularly easy examples to
visualize.

In this book, we address the physics of waves in a fairly thorough fashion,
but illustrate each fundamental concept with practical examples such as sonar,
imaging optics, water ripples, radar and so on. As we proceed, we develop a
range of techniques that have much broader application, and allow us to acquire
the concepts and methods behind many other areas – the most important of
which is probably that of quantum mechanics, where particle–wave duality is
clearly, impressively and sometimes confusingly apparent.
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2 The essence of wave motion

1.2 A local view of wave propagation

You have doubtless already met countless examples of what are termed waves,
from the surface waves in ripple tanks to the vibrations of a guitar string
or the air column in an organ pipe, to radio waves and light. You may have
been led to believe that each of these is a periodic, and perhaps even sinu-
soidal, travelling disturbance. But what of other, more commonplace exam-
ples? Should physicists consider ocean waves, tidal waves, bow waves and
shock waves? Are journalists justified in writing of a wave of fear or wave of
protest?

We shall consider many examples of wave propagation, and manifestations
of wave phenomena, in the following chapters; and our understanding will
stem as much from these accumulated examples as from succinct summariz-
ing statements. We shall see for example that waves need not be periodic,
that the propagated properties may sometimes be neither transverse nor lon-
gitudinal, and that it is not only for simple physical systems that a wave-
propagation description can have some validity. Common principles of propa-
gation allow very different systems to show the same characteristic phenomena
of refraction, reflection, dispersion, superposition, interference and diffrac-
tion. We shall thus come to understand features of wave motion both in an
abstract, generic sense and through the specific manifestations in particular
examples.

It is nonetheless helpful to begin by defining what we mean by a wave, and
we shall in this chapter consider three aspects. First, we shall consider what
happens at a local level to allow a wave to propagate through a given region,
and we shall see that important concepts are the point-to-point propagation of a
physical effect, and the time lag as the effect travels from one point to another.
Secondly, we shall consider the forces of interaction between two charges or
masses, and shall see that waves occur when, for whatever reason, there is a
finite speed of propagation between them. Finally, we shall briefly consider the
nature of the disturbance propagated by the wave.

Numerous examples will illustrate these characteristics throughout this book,
and a couple of specific examples of the origins of wave behaviour are con-
sidered in this chapter. To identify the defining characteristics of a wave, and
illustrate the mechanisms by which it propagates, however, we start with a
rather everyday, and somewhat unscientific, example.

Suggested reading

Suggestions for further reading are indicated throughout the following chap-
ters by the sketch of an open book in the margin. For recent editions of com-
mon textbooks, abbreviated to the author’s surname, specific pages or sec-
tions are given. Full details of all cited texts may be found towards the end of
this book.
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3 1.2 A local view of wave propagation

Fig. 1.1 The Mexican wave la ola, reportedly seen in North America since the 1960s, gained international
popularity after the World Cup in Mexico in 1986. c©Walter Spaeth, ARTside.de

1.2.1 La ola

We begin in Mexico City, where the Azteca Stadium was the centre of the 1968
Olympic Games and, in the lulls between events, television viewers across the
world were delighted to watch a new phenomenon. Restless spectators joined
in as their playful neighbours stood and waved briefly in synchronism, and
the original motion spread as a ripple around the crowd. The Mexican wave
(Fig. 1.1) had (reportedly, at least) made its international debut.

I. Farkas et al. [20].

The Mexican wave is found typically to
travel at 12 m s−1 and have a width of
around 15 seats. Only 30 or so spectators
are needed to start a full wave.

A crowd of human spectators is, of course, a poorly defined, wildly nonlinear
and inhomogeneous medium, yet the Mexican wave clearly illustrates the cru-
cial characteristics of wave motion. The disturbance at any point (in this case,
the vertical displacement of a particular spectator’s hands, say) is a response
to the action of a neighbour in raising or lowering his/her own hands; and the
response is slightly delayed, through either inertia or simply the time lag in
perception. These properties prove to be completely general.

1.2.2 Microscopic definition of a wave

A wave, then, is

a collective bulk disturbance in which what happens at any given position is
a delayed response to the disturbance at adjacent points.

The progress of a disturbance from one point to its neighbours, and thence
to their neighbours and so on, is known as propagation; and the wave prop-
agates through a medium, which may, for example, be water, air or glass, a
guitar string or drum skin, an electrical cable, a crowd of spectators, or pure
vacuum. The medium showing the wave motion need not necessarily be linear
or homogeneous, and the wave does not need to be sinusoidal or even periodic.
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4 The essence of wave motion

Fig. 1.2 Coulomb interaction between the charges+q1 and−q1 of a rotating dipole and a test charge q2.

We shall see that it is often helpful to consider such cases, but they are specific
examples rather than the only forms allowed.

Positions within the medium are described by coordinates (usually in one,
two or three dimensions, depending upon whether the medium is a string, drum
skin or ocean), and at each position the wave is described by one or more
further variables – such as the fluid pressure, electric field strength or elevation
of a spectator’s arms – that quantify the disturbance. These variables, to which
we shall generally refer explicitly, are all wavefunctions. Mathematically, each
wavefunction depends upon, or is defined by, the coordinates of the position at
which it is determined, together with a further variable: time.

1.3 Cause and effect

One of the most common examples of waves is the electromagnetic wave,
manifest as light, radio waves and so on. We’re often tempted to adopt quite
a local picture of electromagnetic wave propagation, and consider a lonely
photon traversing the Universe, or some region of space in which electric
and magnetic fields oscillate in synchronism for no obvious reason. But it
can be helpful to consider as well the sources of waves, and the effects that
they subsequently have as they are detected: for electromagnetic waves, the
overall process is simply that moving charges influence other charges through
a retarded Coulomb interaction. All waves have a cause and effect, and their
explicit inclusion can help to clarify otherwise mysterious phenomena.

1.3.1 Electromagnetic waves

Consider the situation in Fig. 1.2, in which two equal but opposite charges ±q1,
separated by a distance 2a0, form a dipole that rotates slowly, with angular
frequency ω, about its centre. This is our ‘transmitter’ or wave source. Some
distance away, our ‘receiver’ (or detector) is a single charge q2. Both charges
of the dipole will exert a Coulomb force on q2; in each case, the magnitude

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19757-1 - Introduction to the Physics ofWaves
Tim Freegarde
Excerpt
More information

http://www.cambridge.org/9780521197571
http://www.cambridge.org
http://www.cambridge.org


5 1.3 Cause and effect

will be q1q2/(4πε0r 2), where r = r1, r2 is the distance between the test charge
and the dipole charge; and the direction, whether attractive or repulsive, will
be along the line joining the charge centres. If a0 � r0, where r0 is the distance
between the test charge and the dipole centre, then the horizontal component
of the force due to +q1 will cancel out that due to −q1. We’re therefore left
with

C.-A. de Coulomb [14]

just the vertical components, which will add. We shall work out shortly
the magnitude of this force, but for now it suffices to understand how it arises.

As the dipole rotates slowly about its centre, the vertical – or transverse –
force on q2 will grow and fade, and the oscillatory motion of the charges in
the dipole is thereby transmitted to the other charge. The rotating dipole here
represents the flow of charges in the antenna of a radio transmitter and, at a
different scale, the variation of the charge distribution in the electron ‘cloud’
of a radiating atom. So far, then, we’ve considered nothing more than the
electrostatic Coulomb interaction between separated charges.

TheFor the rotating dipole of Fig. 1.2 a(t)
may be written explicitly in the form
a(t) = a0 cos(ωt + ϕ), where
a0 , ω and ϕ characterize the specific
example. But we do not need to be so
specific, and therefore write in terms of
a general function a(t) that indicates
only that the vertical distance a depends
upon the time t .
The functiona(t) should not be confused
with the simple product at .

transverse force component is found by multiplying the individual
Coulomb forces F1 and F2 by sin α(t), where sin α(t) ≈ a(t)/r0 and a(t)
is the vertical component of a0 at time t, and adding them to yield the net
transverse force F (t) experienced by q2. With a little working, and assuming
a0 � r1,2 and r1,2 ≈ r0, this thus turns out to be

F (t) = 2q1q2

4πε0r3
0

a(t). (1.1)

Rather than characterize the effect of the dipole by the force it exerts upon a
specific charge q2, we consider the strength of the electric field, which is simply
the force exerted upon the test charge divided by the value of the test charge q2

itself. We may therefore write

E(t) = F (t)

q2
= 2q1

4πε0r3
0

a(t). (1.2)

We now increase the speed at which the ‘transmitter’ dipole rotates, and the
theory of relativity imposes a time lag or retardation on the force caused by
the dipole: any force caused by the charges of the dipole is delayed by a time
r0/c, so that q2 sees the dipole as it was a time r0/c earlier. When we take this
into account, our expression for the electric field experienced by q2 at a time t
becomes

E(t) = 2q1

4πε0r3
0

a
(

t − r0

c

)
(1.3)

and we thus have our wave: a function that depends upon what was happening
at another position some time previously.

This is how all waves propagate. We can add a medium – other charges
between q1 and q2 – so that the disturbance can also travel from q1 to q3 (say)
and then from q3 to q2, and this turns out to be the origin of the refractive index
of a material and so on.

Feynman [22] Chapters 1 and 2

But the basic principle is that what happens at one
point in space has an influence upon what will happen elsewhere, with a time
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6 The essence of wave motion

lag because of the finite speed of propagation. Waves, then, are what happens
to a system of forces when we move things around quickly enough for delays
to be significant.

You may have spotted that the description here of electromagnetic radiation
isn’t complete: it gives an oscillating electric field, but no accompanying mag-
netic field; and the electric field decreases with the cube of the distance from
the dipole, which, although correct at small distances, does not account for
the generally more important field that varies as r−1

0 and allows the radiation
of energy. This is because, while we introduced the time lag required by the
theory of relativity, we omitted to perform the Lorentz transformations that
take into account the speeds of the moving charges, and to include the variation
in retardation as the individual dipole charges move towards and away from the
test charge.

We shall see in Chapter 19 that a full calculation introduces important correc-
tions to the electric field. Some can be simply written in terms of the motions of
the dipole charges,

Billingham & King [7]
pp. 210–212
D. H. Frisch & L. Wilets [30]

and correspond to radiated electric fields that vary with the
inverse or inverse square of the distance. Other terms turn out to be non-zero
only when q2 is also moving; these yield the radiated magnetic field com-
ponents. Magnetism, it turns out, is simply the relativistic correction to the
electrostatic Coulomb force.

1.3.2 Macroscopic definition of a wave

The example of electric dipole radiation allows us to offer a second definition
of a wave, as

a time-dependent feature in the field of an interacting body, due to the finite
speed of propagation of a causal effect.

While this is more of a description of a wave than an indication of how it arises,
it is both a useful summary of how waves are manifest and a reminder that they
always ultimately emanate from some form of source.

At a more abstract level, waves may be regarded as dynamic solutions to
a time-dependent field theory. Just as simple systems of interacting particles,
which in static equilibrium would be stationary, more generally show oscillatory
motions, so the steady-state fields of stationary charges or masses turn into
waves in the more general dynamic case.

1.3.3 Gravitational waves

Just as electromagnetic waves result from the retardation of an oscillating
electrostatic force, so variations in a gravitational force can be manifest in
gravitational waves. The distances involved are, naturally, cosmological.

Figure 1.3 shows a rather hypothetical scenario in which we have the ability
to move planets. One planet, of mass m1, can be moved in an oscillatory
or rotary motion of amplitude a0, and we are interested in the effect of this
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7 1.3 Cause and effect

v

Fig. 1.3 Gravitational interaction between a moving massm1 and a test massm2.

Amuch-considered source of gravitational
waves is a coalescing binary star. In a typi-
cal example, neutron stars, each of 1.4 so-
lar masses, are separated by a few tens
of kilometres, and rotate about their com-
mon centre of mass several times a sec-
ond. Coalescence occurs within a fewmin-
utes because the stars lose energy and
angularmomentumthroughgravitational
radiation with spiral wavefronts as illus-
trated below:

motion upon a test planet of mass m2. We shall concern ourselves only with
the vertical component of the force experienced by m2, for the large horizontal
component will be largely constant. As shown, the gravitational force is given
by the usual formula to be inversely proportional to the square of the distance
r0 between the masses. We shall assume that a0 � r0.

The vertical component of the gravitational force is given by

Fv(t) = F sin α(t) = F
a(t)

r0
(1.4)

and leads to an apparent gravitational field at m2 with a vertical component gv

given by m2gv = Fv(t), and hence

gv = G
m1

r3
0

a(t). (1.5)

Because

Such mind-boggling systems are the
favoured sources to be observed by
extremely sensitive (and expensive)
gravitational-wave detectors currently
being built at various sites world-wide
and planned for space.

of the finite speed of gravitational propagation, however, the effect is
retarded, and depends not on the current position of planet m1 but upon that
seen by an observer on planet m2 – just as with the

For details of laser
interferometric gravitational-
wave detection see [89–91].

electromagnetic wave:

gv(r, t) = G
m1

r3
0

a
(

t − r0

c

)
. (1.6)

In reality, a motion such as that of m1 must be due to rotation about another
heavenly body, as shown in Fig. 1.4. The second mass has the unfortunate
effect of cancelling out, to first order, the gravitational field oscillations
produced by the first. The result is that only higher-order, quadrupole radia-
tion components may be detected. Their calculation requires a slightly more
careful evaluation.

Fig. 1.4 Gravitational interaction between a rotating pair of massesm1 and a test massm2.
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8 The essence of wave motion

By application of the cosine rule, r 2
1,2 = r 2

0 + a2
0 ± 2a0r0 cos ϑ , where ϑ

defines the orientation of the pair of masses with respect to the test mass, the
net vertical component of the gravitational field is found to be

gv = G
m1a0 sin ϑ

r3
0

[(
1+ a2

0

r2
0

− 2
a0

r0
cos ϑ

)−1

−
(

1+ a2
0

r2
0

+ 2
a0

r0
cos ϑ

)−1
]

= G
2m1a2

0

r4
0

sin(2ωt). (1.7)

With the caveat that, as for electromagnetic waves, we have here calcu-
lated only the short-range component, it is this field that gravitational-wave
observatories are intended to detect.

1.3.4 The æther

In describing the propagation of electromagnetic and gravitational forces, we
have tiptoed straight through the middle of one of the greatest controversies
of the nineteenth century: how can objects influence each other through a
vacuum, unless there is an æther – an intangible fluid – that connects them? By
the early twentieth century, the existence of an æther had been all but disproved:
Maxwell and Einstein had formulated elegant descriptions of the propagation
of electromagnetic and gravitational fields and waves that made no reference to
the presence or properties of any æther; and the results of various experiments –
including those of Michelson and Morley [63, 64] – made any theory of an
æther increasingly untenable. In the twenty-first century, then, we are generally
comfortable that static forces may be transmitted through a vacuum.

But what of waves? The answer here must be the same, yet there are grounds
for disquiet that we should mention, even though they will then be dismissed.
The first is the concept of point-to-point propagation, which will become the
basis of the Huygens description of wave motion: we tend to imagine pho-
tons travelling in straight lines through space, yet diffraction suggests that they
can take other routes even when there is nothing to deflect them. The sec-
ond is the question of radiation. The motions of charges and masses can be
damped by transferring their energy to other charges or masses, in a process
that is extremely clear under Newtonian mechanics; yet the process of radiation
means that the energy must leave the motion before it arrives at the destina-
tion charges or masses – and, indeed, without apparently even requiring their
existence!

We shall not offer here any answer to this conundrum, but there are some
comments that can be made. First, the problem lies not with the wave treat-
ment but with the propagation of the forces in themselves – so the question
goes beyond the scope of this book. Secondly, the problem is one of our
imagination: physics has well-tested models that account very accurately for
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9 1.4 Examples of wave disturbance

how the forces propagate; our problem is the more philosophical ‘why?’ – so,
arguably, it’s not even a question for physics! Summarized another way: we
have very good descriptions of how electromagnetic and gravitational forces
work, and the propagation of electromagnetic and gravitational waves is sim-
ply a consequence that we derive from those initial descriptions. Neither the
forces nor their wave propagation has yet presented any inconsistency, either
with itself or with experimental observation. So, if we find it hard to imagine,
that’s a defect with our imagination. But it shouldn’t stop us asking interesting
questions!

1.4 Examples of wave disturbance

In the examples above, we have considered two wave motions in which the
propagated property or disturbance is a force or displacement perpendicular
to the direction of wave propagation. It is common to refer to these as transverse
waves, and to distinguish them from longitudinal motions that are parallel to
the direction of wave propagation. To end this chapter we consider the validity
of such categorizations for some common examples of wave motion.

Transverse wave motions, including electromagnetic and gravitational
waves, are characterized by the propagation or measurement of a transverse
physical displacement; the disturbance, in other words, is a vector property
directed perpendicular to the direction of wave propagation. As well as trans-
verse waves in vacuum, there are many examples in what may be considered
continuous media. The transverse motion of a guitar string, for example, is
considered to result from the curvature of the taut string, so that the tension
does not pull in exactly opposite directions on opposite sides of any given
point. In this category, we might also consider surface water waves, due to the
transverse components of surface tension or gravitational forces, and mountain
lee waves in the atmosphere. The skin of a drum is a two-dimensional version
of the guitar string; and surface acoustic waves used in optoelectronic devices
resemble ocean waves with the bulk elasticity of the medium playing the role
of gravity.

Longitudinal waves are those in which the physical displacement or dis-
turbance is once again a vector quantity, but is parallel to the direction of
propagation. The classic example here is sound, and the motion results because
the pressures either side of a given region are not equal. The pulse of our blood
flow may be considered a form of sound wave, as may the pulses observed in
the exhausts of jet engines.

There is no reason why a vector disturbance should be aligned parallel or
perpendicular to the propagation direction, however: it is possible to generate
longitudinal electromagnetic and gravitational waves, and when magnetization
propagates as a spin wave it can have transverse and longitudinal components.
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10 The essence of wave motion

Terrestrial and solar seismology similarly involve manifestations of both lon-
gitudinal and transverse wave motion.

The wave disturbance need not be a physical force or displacement; it could
be a scalar quantity, or a vector unrelated to the propagation coordinates.
Temperature, for example, may propagate as thermal waves; and the spatially
dependent concentrations of chemical reactants and products can change as
chemical waves travel through a reaction–diffusion system such as the human
heart, or as a flame front travels through a flammable material. Perhaps the most
fascinating example of a propagated property that is not a displacement is the
quantum wavefunction – the mysterious quantity that, according to quantum
mechanics, contains everything we can know about a particle. Quite what the
quantum wavefunction is, and what it means, are profound questions that must
be left to other texts; but the nature of its propagation is identical to that of the
other wave manifestations that we’ll study here.

One could reason that thermal waves propagate by the longitudinal flow of
heat, or argue that sound waves may be described by the scalar property of
pressure. The simple characterization into transverse, longitudinal and scalar
waves is therefore not always straightforward. Fortunately, such labels are really
only for convenience; there are few physical consequences, and we shall see
that in specific cases an examination of the propagation mechanisms resolves
any doubt as to the phenomena observed.

So what of the waves of emotion and protest mentioned earlier? A key
aspect of wave propagation is that the disturbance should propagate from point
to point in a causal fashion, rather than simply reflect the staggered arrival
times at adjacent points via independent routes. So, provided that the fear or
protest of each person is inspired by the fear or protest of a neighbour – and
social scientists can be reasonably clear in identifying such mechanisms – it
may indeed be valid to regard the propagation of such properties as a wave.
That the medium through which the wave propagates is composed of people
who are discrete, nonlinear and to some extent irreproducible does not differ
fundamentally from many granular, nonlinear and noise-ridden examples of
more classical physical systems. The wave description may not only serve as a
useful shorthand to imply the neighbour-to-neighbour-mediated propagation:
subject to the natural imprecision of such systems, it may even allow their
mathematical simulation and prediction.

Exercises

The following exercises do not directly concern wave propagation but address the
mathematical techniques used in subsequent chapters. Substitute a few arbitrary
values for a simple numerical check.
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