Index

Note: page numbers in *italics* refer to figures and tables, those in **bold** refer to boxes

activins, 7
adrenomyosis
myometrial cyst, 219
ultrasound monitoring for ovulation induction, 218
adult respiratory distress syndrome (ARDS), 125
age, chronological and ovarian reserve, 255
albumin, intravenous OHSS, prevention, 117
treatment, 122
polycystic ovarian syndrome, 96
amenorrhea, hyperprolactinemia, 201–202
anastrozole, 7, 9
androgen(s), 7
androgen priming, poor responders, 83
anesthesia, OHSS patients, 125–126
anovulatory patients, 14–22
anti-estrogen therapy, 17–18
aromatase inhibitors, 20
clomiphene citrate, 17–18, 21–22
complications of ovarian stimulation, 21–22
diet restriction, 16
exercise, 17
follicle development, 21–22
FSH levels, 15
gonadotropin therapy, 18–19
hCG, 17, 19
hypogonadotropic, 17
insulin resistance, 19
insulin sensitizers, 19–20
interventions, 14–22
laparoscopic electrocoagulation of the ovaries, 20
lifestyle interventions, 15–17
luteal support, 17
metformin, 19–20
normogonadotropic, 17–20
ovarian hyperstimulation syndrome, 21–22
overweight/obesity, 15–16
pharmacological interventions, 17–20
prostaglandin E2 levels, 15
smoking cessation, 16
surgical intervention, 20
tamoxiphene, 18
weight reduction, 15–16, 17
WHO criteria, 14
anterior pituitary Pit-1 gene, 195
prolactin secretion, 195
anti-estrogens
anovulatory patients, 17–18
intrauterine insemination with mild ovarian hyperstimulation, 29
anti-Mullerian hormone (AMH)
folicular recruitment, 44
GnRH agonist use, 44
treatment response, 45
ovarian reserve, 258
antral follicle count combination, 259
polycystic ovarian syndrome, 94
antibiotics, OHSS, 123
anticoagulant therapy, OHSS, 122–123
antidepressants, hyperprolactinemia induction, 199
antihypertensive agents, hyperprolactinemia induction, 199
antipsychoytic agents, hyperprolactinemia induction, 199
ascites in OHSS, 104, 105, 106, 112
management, 124–125
ascorbic acid, progesterone combination for luteal phase support, 247
aspirin, progesterone combination for luteal phase support, 248
assisted reproduction therapy (ART)
controlled ovarian stimulation, 151
polycystic ovarian syndrome, 92–94
autoimmune disease, fertility preservation, 190
bariatric surgery, polycystic ovarian syndrome, 88
body weight, hCG effects in oocyte maturation, 234–235
bone morphogenetic protein-15 (BMP-15), OHSS prediction, 110–111
bromocriptine, 204–205
long-acting, 204
buserelin, OHSS incidence, 94
cabergoline, 204–205
high responders, 147
fertility preservation in estrogen-dependent malignancy, 8–9
GnRH antagonist adjunct in poor responders, 81–82
injectable gonadotropins concomitant use, 7–8
intrauterine insemination with mild ovarian hyperstimulation, 28–29
minimal stimulation protocol, 134
outcome of treatment, 20
ovarian stimulation mechanism, 7, 20
role, 7–8
polycystic ovarian syndrome, 8, 91
pregnancy outcome, 9
safety, 9, 20
third generation, 6, 7
advantages, 6–7
treatment regimen, 20
women benefiting, 8–9
weight reduction, 15–16, 17
WHO criteria, 14
OHSS, 116
 prevention, 119–120
cancer survivors, oocyte donation, 189–191
cervix, evaluation, 222
cetrorelix, 50–52
 natural cycle IVF with GnRH antagonists, 54
OHSS prevention, 113–114
 polycystic ovarian syndrome, 94
older patients, 57
outcome, 57
poor responders, 80
structure, 50
chest wall injuries, hyperprolactinemia, 201
circulatory volume correction, OHSS management, 122
clomiphene (clomifene) citrate, 1–5
 administration regimens, 2–3, 17
 adverse effects, 1–2, 3–5, 17
 anovulatory patients, 17–18, 21, 22
 antiestrogenic effects, 5
 chemical structure, 2
 congenital anomalies, 4
dosage rate, 2, 89
endometrium effects, 5
 Boland, 2
 cost, 151
 complications, 173
 complications, 173
 low-dose hCG, 156–157
 multi-gestation pregnancy risk, 173
 natural cycle IFV comparison, 173–174
OHSS risk, 173, 181
poor responders, 77–84, 175, 176
 progesterone, 77–84
 pregnancy risk, 70–73
 use, 67–74
recombinant LH, 155
 corticosteroids, 155
 hypogonadotropin, 155
 hypogonadism, 155
Creutzfeld–Jakob disease, iatrogenic
 metabolism, 196
 ovulation induction, 219–221
 prolactin secretion regulation, 196
 tuberoinfundibular pathway, 196
 anovulatory patients, 15
 contraceptive pills, 15
 dopamine, 15
 estrogen, 15
 follicle-stimulating hormone, 15
 gonadotropin, 15
 growth hormone, 15
 hCG, 15
 hMG, 15
 hCG, 15
 hyperprolactinemia, 15
 hypogonadism, 15
 hypogonadotropin, 15
 hypogonadotropin, 15
 hyperprolactinemia, 15
 hypogonadotropin, 15
 hormone, 15
 hypogonadotropin, 15
Index

estrogen (cont.)
moderation of actions, 1
pretreatment in hypogonadotropic hypogonadism, 167–168
priming for GnRH antagonist poor responders, 81
prolactin secretion regulation, 196–197
reduction by aromatase inhibitors, 7
estrogen modulators, 1
exercise, anovulatory patients, 17
exogenous FSH ovarian reserve test (EFORT), 258
factor V, 9
fertility preservation
autoimmune disease, 190
cancer survivors, 189–191
in vitro maturation, 189–191
follicle-stimulating hormone (FSH), 61, 151
acidic isoforms, 62–63
adverse events, 64
age correlation with serum levels, 255
anovulatory patient treatment, 15, 18–19
dose increase with GnRH antagonists, 53
effectiveness, 63–64
gonadotropin therapy, 152–155
hCG β-subunit of C-terminal peptide attachment, 168–169
highly purified, 153
hCG supplementation, 156
hyperinsulinemia, 19
hyperprolactinemia effects, 201
hypogonadotropic anovulatory patients, 17
isoforms, 62–63
IVF, 34–39
mild, 35
LH pretreatment in hypogonadotropic hypogonadism, 165
LH receptor sensitivity of granulosa cells, 71
LH surge, 61
luteal phase with GnRH agonist, 79
minimal stimulation protocol, 133–134
molecular, 62
ovarian hyperstimulation syndrome, 64
ovarian reserve marker, 255–256, 257
poor responders, 77
premature follicular luteinization, 153
preovulatory follicles, 153
progesterone levels, 72
recombinant, 62, 64, 153
E levels, 154
polycystic ovarian syndrome, 94
pregnancy rates, 154
prostaglandin levels, 154
recombinant LH supplementation, 155–156
smoking effects, 16
two cell–two gonadotropin hypothesis, 162
follicle-stimulating hormone (FSH) receptor gene, SNPs, 259
follicle-stimulating hormone receptors (FSHR) genotype in OHSS prediction, 109–110
testosterone augmentation of expression, 7
follicles development, 233
multiple, 42, 44
preovulatory with FSH/LH activity, 153
follicular luteinization, premature, 153
follicular recruitment dynamics, 44
follicular luteinization, premature, 153
follicular recruitment anti-Mullerian hormone levels, 44
dynamics with GnRH agonists, 44
cellular rupture, hCG administration timing, 237
folliculogenesis, FSH supplemented with hCG, 156–157
follitropin alpha, 62
follitropin beta, 62
galactorrhoea, hyperprolactinemia, 201–202, 206
ganirelix, 50, 55
OHSS prevention, 113–114
polycystic ovarian syndrome, 94
structure, 50
gastrointestinal agents, hyperprolactinemia induction, 199
glucocorticoids
OHSS prevention, 118
poor responders, 83
gonadotropin receptor stimulants, 1
gonadotropin-releasing hormone (GnRH), 49
hyperprolactinemia effects, 201
pulsatile therapy in hypogonadotropic hypogonadism, 166–168
gonadotropin-releasing hormone (GnRH) agonists, 42–47
anti-Mullerian hormone levels, 44, 45
desensitization regimen, 34–39
down-regulation, 43
dual suppression for high responders, 135–136
efficacy, 43
flare effect, 43–44
flare protocol, 45–46
poor responders, 77–78
follicular recruitment dynamics, 44
GnRH antagonist comparison, 51–52
hCG in oocyte maturation, 236–237
high responders, 137–138
historical perspectives, 42
hypogonadotropic anovulatory patients, 17
intrauterine insemination with mild ovarian hyperstimulation, 28–29
LH concentration, 46
LH release, 240
LH supplementation in poor responders, 78
LH surge, 47, 93
control, 49
luteal phase FSH in poor responders, 79
luteal phase recovery, 244
luteal phase support, 47, 248–249
onset, 249
oocyte maturation triggering, 241
microdose flare
poor responders, 79–80
protocols, 132
mini-dose luteal phase, 79
mode of action, 43
OHSS, 44, 114
prediction, 44
prevention, 115–116
risk, 45
oocyte maturation induction, 240
freeze-all strategy combination, 241
luteal phase support, 241
oocyte competence effects, 240
polycystic ovarian syndrome, 94–95
triggering of final with GnRH antagonist protocol, 55
oocyte retrieval, 238
coral contraceptives before flare protocol, 78
ovarian cysts, 227
ovarian reserve, 45
ovulation triggering in OHSS prevention, 115–116
poor responders, 132
flare protocol, 77–78
LH supplementation, 78
microdose flare, 79–80
mini-dose luteal phase, 79
plus luteal phase FSH, 79
gonadotropin-releasing hormone
analog stimulation test (GAST), 257–258
agonists, 49–57
protocols for ovarian stimulation,
130–131
recombinant LH, 155
safety, 44
protocols for poor responders, 78
treatment, 43–47
adenotropin-releasing hormone
(analog stimulation test) (GAST), 257–258
agonists, 49–57
adjuants, 81–82
aromatase inhibitors in poor
responders, 81–82
clophene citrate, 53
poor responders, 81–82
development, 49
estrone siming, 50
estrone siming in poor
YRponders, 81
estrogen siming priming in poor
YRponders, 81
first generation, 49
flexible protocol, 53
FSH dose increase, 53
GnRH antagonists
comparison, 51–52, 133
final oocyte maturation triggering, 55
flare protocol comparison, 133
oocyte maturation induction in
polycystic ovarian syndrome, 94–95
hCG in oocyte maturation, 237
high responders, 136–137
human menopausal gonadotropin
use, 53
intratereine insemination with mild
ovarian hyperstimulation, 28–29, 30
IVF babies, 57
LH surge, 93
eontrol, 49
effects, 55
luteal phase supplementation, 244–245
meta-analyses, 56
microdose flare regimen in poor
responders, 80–81
mild IVF, 35
minimal stimulation, 133–134
protocol, 134, 138
mode of action, 49–50
natural cycle IVF, 54
OHSS, 56–57
coasting, 56
urine, 113–114, 117
prevention in polycystic ovarian
syndrome, 94
older patients, 57
oral contraceptives before IVF, 53–54
outcomes, 51–52, 57
poor responders, 80–81
adjuncts, 81–82
aromatase inhibitors, 81–82
clophene citrate, 81–82
estrone siming, 81
microdose flare regimen, 80–81
progesterone levels, 72
protocols for ovarian stimulation,
130–131
recombinant LH use, 54, 55–56, 155
progesterone levels, 72
prototreol LH surge, 93
OHSS risk, 19, 92, 111–112, 114
outcomes, 19
oocyte maturation with mild
ovarian hyperstimulation, 28, 29, 30
long-term risks, 34
mechanism of action, 18–19
multiple pregnancy risk, 19
OHSS risk, 19, 92, 111–112, 114
outcomes, 19
PHCG treatment, 154
oocyte maturation, 233–241
nuptal phase defect, 244
see also follicle-stimulating hormone
(FSH); luteinizing hormone
(LH)
GPR54 gene, 169
growth hormone (GH)
adjunct in poor responders, 82–83, 132, 146
hCG combination, 167
IGF-1 combination in
hypogonadotropic hypogonadism, 166–167
hemosiderosis, 168
human chorionic gonadotropin (hCG)
administration routes, 234
anovulatory patients, 19
luteal support in
hypogonadotropic patients, 17
hypogonadotropic hypogonadism, 164
intratereine insemination with mild
ovarian hyperstimulation, 30
LH activity, 151–152
LH surge, 234
low-dose in controlled ovarian
stimulation, 156–157, 158
luteal phase support, 248
onset, 249
luteal support in polycystic ovarian
syndrome, 93
molecule, 63
OHSS
administration delay, 115
dose decrease, 115
risk, 240, 248
risk in polycystic ovarian
syndrome, 95
oocyte maturation, 233–241
administration routes, 234, 235
before retrieval, 178–179
bodyweight effects, 234–235
GnRH agonist long protocol, 236–237
GnRH antagonist protocol, 237
luteal phase defect, 244
minimally effective dose, 235–236
outcomes, 238
time to follicular rupture, 237
ovarian retrieval dosage, 239
perifollicular blood flow, 229–230
pharmacokinetics, 234, 235
preparations, 152, 156
progesterone
levels, 67, 73–74
for luteal support, 47
outcome, 71
recombinant
oocyte maturation, 239–240
ovulation induction, 238
pharmacokinetics, 238
reduction in high responders, 136
serum accumulation from hMG, 71
thalassemia, 168
in vitro maturation, 182–183
human chorionic gonadotropin (hCG)
/LH protocol for mild IVF, late
follicular phase, 36, 37
human menopausal gonadotropin
(hMG)
development, 61–62
E, levels, 154
estriene pretreatment, 167–168
GH adjunct, 167
GnRH antagonist protocols, 53
highly purified, 62

© in this web service Cambridge University Press
www.cambridge.org
<table>
<thead>
<tr>
<th>Human Menopausal Gonadotropin (hMG) (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonadotropin dose, 154</td>
</tr>
<tr>
<td>Pregnancy rates, 154</td>
</tr>
<tr>
<td>Hypogonadotropic Hypogonadism, 164</td>
</tr>
<tr>
<td>LH</td>
</tr>
<tr>
<td>Activity, 151</td>
</tr>
<tr>
<td>Content, 64</td>
</tr>
<tr>
<td>Preparations, 152</td>
</tr>
<tr>
<td>Prostaglandin levels, 154</td>
</tr>
<tr>
<td>Serum hCG Accumulation, 71</td>
</tr>
<tr>
<td>Thalassemia, 168</td>
</tr>
<tr>
<td>Hydrolyaparoscopy, transvaginal, 211</td>
</tr>
<tr>
<td>Hydrosalpinges, 227–228</td>
</tr>
<tr>
<td>Hydroxyethyl starch solution (HES),</td>
</tr>
<tr>
<td>Hyperprolactinemia, 195–207</td>
</tr>
<tr>
<td>Hyperinsulinemia, FSH levels, 19</td>
</tr>
<tr>
<td>Hypogonadotropic Hypogonadism, 197–207</td>
</tr>
<tr>
<td>Anovulatory patients, 14</td>
</tr>
<tr>
<td>Physiologic, 197–198</td>
</tr>
<tr>
<td>Clinical manifestations, 201–202</td>
</tr>
<tr>
<td>Diagnosis, 201–202</td>
</tr>
<tr>
<td>Dopamine agonists, 203–205</td>
</tr>
<tr>
<td>Estrogen therapy, 202–206</td>
</tr>
<tr>
<td>Evaluation, 202–203</td>
</tr>
<tr>
<td>Galactorrhea, 201–202</td>
</tr>
<tr>
<td>Hypogonadism, 201</td>
</tr>
<tr>
<td>Hypothyroidism, 198–206</td>
</tr>
<tr>
<td>Idiopathic, 200–203</td>
</tr>
<tr>
<td>Imaging, 202–203</td>
</tr>
<tr>
<td>Infertility, 201</td>
</tr>
<tr>
<td>Laboratory tests, 202–203</td>
</tr>
<tr>
<td>Macroprolactinemia, 200</td>
</tr>
<tr>
<td>Management, 203–206</td>
</tr>
<tr>
<td>Osteopenia/osteoporosis, 201</td>
</tr>
<tr>
<td>Pathologic causes, 198–201</td>
</tr>
<tr>
<td>Pharmacologic agents, 198–200, 206</td>
</tr>
<tr>
<td>With pituitary lesions, 203–204</td>
</tr>
<tr>
<td>Prolactinoma, 198</td>
</tr>
<tr>
<td>Radiation therapy, 206</td>
</tr>
<tr>
<td>Surgical treatment, 206</td>
</tr>
<tr>
<td>Withdrawal of therapy, 205</td>
</tr>
<tr>
<td>Without pituitary lesions, 203</td>
</tr>
<tr>
<td>Hypogonadism, hypoprolactinemia, 201</td>
</tr>
<tr>
<td>Hypogonadotropic hypogonadism, 162–169</td>
</tr>
<tr>
<td>Classification, 163</td>
</tr>
<tr>
<td>Clinical features, 162</td>
</tr>
<tr>
<td>Corifollitropin therapy, 168–169</td>
</tr>
<tr>
<td>Erk1 and Erk2, 162, 169</td>
</tr>
<tr>
<td>Estrogen pre-treatment, 167–168</td>
</tr>
<tr>
<td>FSH treatment with LH</td>
</tr>
<tr>
<td>Pretreatment, 165</td>
</tr>
<tr>
<td>GH/IFG-1 administration, 166–167</td>
</tr>
<tr>
<td>GnRH treatment, 166–168</td>
</tr>
<tr>
<td>Gonadotropin therapy, 163–166</td>
</tr>
<tr>
<td>Complications, 165–166</td>
</tr>
<tr>
<td>Outcome, 165</td>
</tr>
<tr>
<td>hCG treatment, 164</td>
</tr>
<tr>
<td>hMG treatment, 164</td>
</tr>
<tr>
<td>Kisspeptin, 162</td>
</tr>
<tr>
<td>Kisspeptin-GPR54 complex, 169</td>
</tr>
<tr>
<td>LH treatment, 164–165</td>
</tr>
<tr>
<td>Luteal support, 164–168</td>
</tr>
<tr>
<td>OHSS with gonadotropin therapy, 165–166</td>
</tr>
<tr>
<td>Ovulation induction, 151</td>
</tr>
<tr>
<td>Protocols, 163–169</td>
</tr>
<tr>
<td>Hypothyroidism, 198–201</td>
</tr>
<tr>
<td>Hyperprolactinemia, 198, 206</td>
</tr>
<tr>
<td>Prolactin secretion, 199</td>
</tr>
<tr>
<td>Implantation window, in vitro maturation, 183–184</td>
</tr>
<tr>
<td>In vitro fertilization (IVF), 181</td>
</tr>
<tr>
<td>Babies in GnRH antagonist cycles, 57</td>
</tr>
<tr>
<td>Clomiphene citrate/FSH protocol, 36</td>
</tr>
<tr>
<td>Economics, 35</td>
</tr>
<tr>
<td>Results, 37</td>
</tr>
<tr>
<td>Conventional ovarian stimulation, 34–35</td>
</tr>
<tr>
<td>Intrauterine insemination with mild ovarian hyperstimulation comparison, 31</td>
</tr>
<tr>
<td>Late follicular phase hCG/LH protocol, 36</td>
</tr>
<tr>
<td>Results, 37</td>
</tr>
<tr>
<td>Luteal phase abnormality, 244–245</td>
</tr>
<tr>
<td>Support, 244–250</td>
</tr>
<tr>
<td>Mild, 34–39</td>
</tr>
<tr>
<td>Definition, 35</td>
</tr>
<tr>
<td>Embryo quality, 37–38</td>
</tr>
<tr>
<td>Health economics, 38</td>
</tr>
<tr>
<td>Patient groups, 38–39</td>
</tr>
<tr>
<td>Pregnancy rate, 38</td>
</tr>
<tr>
<td>Psychological burden, 38–39</td>
</tr>
<tr>
<td>Rationale, 35</td>
</tr>
<tr>
<td>Regimens, 36</td>
</tr>
<tr>
<td>Results, 36–38</td>
</tr>
<tr>
<td>Success rates, 36–37</td>
</tr>
<tr>
<td>Modified cycle, 36</td>
</tr>
<tr>
<td>Natural cycle, 173–179</td>
</tr>
<tr>
<td>Oral contraceptives before in GnRH antagonist cycles, 53–54</td>
</tr>
<tr>
<td>Pseudocystic ovarian syndrome, 93–94</td>
</tr>
<tr>
<td>Poor responders, 173–174</td>
</tr>
<tr>
<td>Protocol selection for ovarian stimulation, 130–138</td>
</tr>
<tr>
<td>Short antagonist protocol with low dose FSH, 36, 37</td>
</tr>
<tr>
<td>See also controlled ovarian stimulation (COS); Natural cycle IVF</td>
</tr>
<tr>
<td>In vitro maturation (IVM) of oocytes, 181–191</td>
</tr>
<tr>
<td>Antral follicle count, 182, 188</td>
</tr>
<tr>
<td>Assisted hatching, 185</td>
</tr>
<tr>
<td>Blastocyst transfer, 185</td>
</tr>
<tr>
<td>Congenital abnormalities, 187</td>
</tr>
<tr>
<td>Cumulus–oocyte complexes, 185</td>
</tr>
<tr>
<td>Embryo implantation rate, 186</td>
</tr>
<tr>
<td>Embryo transfer, 185</td>
</tr>
<tr>
<td>Embryology laboratory procedures, 185</td>
</tr>
<tr>
<td>Endometrium</td>
</tr>
<tr>
<td>Estrogen exposure, 184</td>
</tr>
<tr>
<td>Thickness, 183–184</td>
</tr>
<tr>
<td>Fertility preservation, 189–191</td>
</tr>
<tr>
<td>Gonadotropin therapy, 182</td>
</tr>
<tr>
<td>hCG administration, 182–183</td>
</tr>
<tr>
<td>High responders, 138</td>
</tr>
<tr>
<td>ICSI, 185</td>
</tr>
<tr>
<td>Immature oocyte use, 181–182</td>
</tr>
<tr>
<td>Implantation window, 183–184</td>
</tr>
<tr>
<td>Indicators, 188–191</td>
</tr>
<tr>
<td>Karyotype, 187</td>
</tr>
<tr>
<td>Luteal support, 185–186</td>
</tr>
<tr>
<td>Multi-gestation pregnancy, 186, 187</td>
</tr>
<tr>
<td>Neurermotor development, 187</td>
</tr>
<tr>
<td>Obstetric outcome, 187</td>
</tr>
<tr>
<td>OHSS prevention, 120</td>
</tr>
<tr>
<td>Oocytes collection, 184–185</td>
</tr>
<tr>
<td>Cryopreservation, 189–190</td>
</tr>
<tr>
<td>Donation, 188–190</td>
</tr>
<tr>
<td>Outcome, 186–187</td>
</tr>
<tr>
<td>Physical development, 187</td>
</tr>
<tr>
<td>Pseudocystic ovarian syndrome, 96–97, 186–187</td>
</tr>
<tr>
<td>Poor responders to gonadotropin stimulation, 188</td>
</tr>
<tr>
<td>Pregnancy loss, 186–187</td>
</tr>
<tr>
<td>Rate, 186</td>
</tr>
<tr>
<td>Treatment cycle, 182–185</td>
</tr>
<tr>
<td>Monitoring/management, 182–184</td>
</tr>
<tr>
<td>Indomethacin, OHSS treatment, 124</td>
</tr>
<tr>
<td>Infertility, hyperprolactinemia, 201</td>
</tr>
<tr>
<td>Inhibit B, ovarian reserve marker, 257</td>
</tr>
<tr>
<td>Insulin-like growth factor 1 (IGF-1) androgen stimulation, 7</td>
</tr>
<tr>
<td>GH combination in hypogonadotropic hypogonadism, 166–167</td>
</tr>
<tr>
<td>Insulin resistance anovulatory patients, 19</td>
</tr>
<tr>
<td>Polycystic ovarian syndrome, 16, 19</td>
</tr>
<tr>
<td>Insulin sensizers, 1</td>
</tr>
<tr>
<td>Adverse effects, 20</td>
</tr>
<tr>
<td>Anovulatory patients, 19–20</td>
</tr>
<tr>
<td>Mechanism of action, 19</td>
</tr>
<tr>
<td>Outcome of treatment, 19</td>
</tr>
<tr>
<td>Treatment regimen, 19</td>
</tr>
<tr>
<td>266</td>
</tr>
</tbody>
</table>
multi-gestation pregnancy
avoidance in intrauterine
insemination with mild ovarian
hyperstimulation, 30–31
clomiphene citrate, 3
controlled ovarian stimulation, 173
gonadotropin therapy in
hypogonadotropic
hypogonadism, 165
risk with gonadotropin therapy, 19
in vitro maturation, 186, 187
myometrial cyst, 219

natural cycle IVF, 36, 173–179
cost, 178
efficacy, 178
with GnRH antagonists, 54
modified, 178
oocyte retrieval, 174, 178
failure, 179
outcome, 176–178
poor responders, 173–178
age of women, 177
cycles, 177
pregnancy rate, 176–178
protocol, 178
necklace sign, OHSS prediction, 112–113
neuromotor development, in vitro
maturation, 187

obesity
anovulatory patients, 15–16
hCG effects in oocyte maturation, 234–235
laparoscopic ovarian diathermy
resistance, 92
polycystic ovarian syndrome, 87–88
oocyte(s)
cryopreservation, 189–190
immature, 181–182
meiosis, 182
metaphase II stage, 181, 185
quality and progesterone
administration, 69, 70
oocyte donors, 69–70
oocyte recipients, 70
oocyte donation, 69–70
in vitro maturation, 188–189, 190
oocyte maturation, 233
GnRH agonists in polycystic ovarian
syndrome, 94–95
with hCG, 178–179
regulation, 233
oocyte maturation, triggering of final,
233–241
GnRH, 240
GnRH agonists, 55
freeze-all strategy combination, 241

hCG, 233–241
administration routes, 234, 235
bodyweight effects, 234–235
GnRH agonist long protocol, 236–237
GnRH antagonist protocol, 237
minimally effective dose, 235–236
optimal time to oocyte retrieval,
237–240
outcomes, 238
recombinant, 239–240
time to follicular rupture, 237
recombinant LH, 240

oocyte retrieval
GnRH agonists, 238
hCG administration
dosage, 239
optimum time, 237–240
in vitro maturation, 184–185
natural cycle IVF, 174, 178
failure, 179
opiates, hyperprolactinemia induction, 199
oral agents, 1–9
oral contraceptives
before IVF
GnRH agonist cycles, 78
GnRH antagonist cycles, 53–54
dual suppression for high
responders, 135–136
osteopenia/osteoporosis,
hyperprolactinemia, 201
ovarian adhesions, 212
ovarian cancer, clomiphene citrate, 3–4
ovarian cautery
bilateral, 210–211
blood supply impairment, 213
consensus statements, 214
costs, 213
drilling
complications, 212–213
methods, 209–211
outcomes, 210
efficacy, 214
evidence-based meta-analyses, 214
expert opinion, 214
laparoscopic ovarian diathermy
consensus statements, 214
OHSS prevention, 118
polycystic ovarian syndrome,
91–92
premature ovarian failure,
212–213
laparoscopic ovarian multi-needle
intervention, 212
laser
complications, 213
methods, 209–210
mechanism of action, 213–214
ovarian adhesion risk, 212

pelvic adhesion risk, 212
polycystic ovarian syndrome,
209–214
premature ovarian failure, 212–213
transvaginal hydro laparoscopy, 211
ultrasound-guided transvaginal
ovarian needle drilling,
211–212
unilateral, 210–211
unipolar, 209
ovarian cysts
dermoid, 226–227
functional, 227
hemorrhagic, 227
para-ovarian, 227
ruptured, 125
ovarian failure, premature, 212–213
ovarian hyperstimulation, mild
efficacy, 178
intrauterine insemination, 27–31
normal responders, 173, 178
pregnancy rate, 178
ovarian hyperstimulation syndrome
(OHSS), 103–126
abdominal paracentesis, 98, 124
adult respiratory distress syndrome,
125
anesthesia, 125–126
anovulatory patients, 21–22
antibiotic treatment, 123
anticoagulant therapy, 122
duration, 123
prophylactic, 122–123
ascites, 104, 105, 106, 112
management, 124–125
aspiration procedures, 124–125
autotransfusion of ascitic fluid, 125
avoidance in intrauterine
insemination with mild ovarian
hyperstimulation, 30–31
biochemical monitoring, 122
BMP-15, 110–112
cabergoline in prevention, 116,
119–120
circulatory volume correction, 122
classifications, 97, 103–106, 107, 108
clinical features, 103
clinical monitoring, 122
clophemine citrate, 3
coasting, 113, 115
GnRH antagonists, 56
polycystic ovarian syndrome, 95
controlled ovarian stimulation, 151,
173, 181
cycle cancellation, 96, 115
cystic ovaries, 103
diuretics, 124
dopamine agonists, 118–120
dopamine treatment, 124, 125
eye-onset, 57
ectopic pregnancy, 126
embryo replacement, 122
embryo cryopreservation, 120
follicular monitoring by ultrasound, 112–113
FSH, 64
FSH use, 64
glucocorticoids, 118
GnRH agonists, 44, 114, 116
hCG substitution, 137–138
ovulation triggering, 115–116
prediction, 44
risk, 45
GnRH antagonists, 56–57
gonadotropin therapy, 98
hCG
hydroxyethyl starch solution, 117–118, 122
inpatient care, 121
indomethacin, 124
inpatient care, 98
intravenous albumin, 117, 122, 123
IVF, 34
laparoscopic ovarian diathermy, 118
metformin, 118
mild, 104–105
moderate, 104–105
outpatient management, 120
outpatient management, 97–98, 120–121
ovarian torsion management, 125–126
pathophysiology, 106–107, 109
pericardiocentesis, 125
pleural effusion, 107
pleurocentesis, 125
polycystic ovarian syndrome, 92, 113
prevention, 94–95
risk, 94–97
polycystic ovaries, 111, 112–113
prediction, 107–111, 112–113
pregnancy termination, 126
prevention, 113–120
primary, 115
secondary, 115
pulmonary complications, 125
quinagolide in prevention, 120
ruptured cyst management, 125
secondary prevention, 241
severe, 105–106
in-hospital management, 121
outpatient management, 121
prediction, 109
thromboembolism risk, 122
transvaginal ultrasound-guided aspiration, 124
treatment, 120–126
medical, 122–124
surgical, 125–126
treatment, factors influencing, 111–112
twin pregnancy, 112
tyrosine hydroxylase, 119
VEGF expression, 116–117, 118–119
VEGF receptors, 110
venous thrombosis risk, 122
ovarian reserve, 255–259
anti-Müllerian hormone levels, 258
antral follicle count, 258
chronological age, 255
estradiol levels, 256–257
FSH receptor gene SNPs, 259
GnRH agonists, 45
inhibin B levels, 257
markers, 255–259
combination, 259
dynamic, 257–258
ovarian stimulation guide, 259
ovarian volume, 257
screening, 255
tests, 256
ovarian response, pregnancy rate, 69
ovarian torsion, OHSS, 125–126
ovarian volume
age correlation, 255
assessment, 223–224
OHSS prediction, 113
ovarian reserve marker, 257
ovaries
abnormalities, 225–228
assessment, 222–228
failure to visualize, 230
normal, 223–225
cystic, 103
kissing, 226
laparoscopic surgery, 209
polycystic, 225
OHSS, 111, 112–113
site, 222–223
wedge resection, 209, 213
overweight
anovulatory patients, 15–16
see also obesity
ovulation induction, 151
hypergonadotropic hypogonadism, 162–169
protocols, 163–169
pretreatment evaluation, 217
thalassemia, 168
US monitoring, 217–230
paracentesis, abdominal in OHSS, 98, 124
pelvic adherions, 212
diabetes mellitus, 226
perigland, 204
pericardiocentesis, OHSS, 125
perifollicular blood flow, 229–230
peritoneal/psuedoperitoneal cysts, 228, 229
physical development, in vitro maturation, 187
pioglitazone, 19
Pit-1 gene, 195
pituitary adenoma, 120–121
ovarian stimulation, 87–98
pericystic ovarian syndrome (PCOS), 87–98
anovulatory patients, 14
anti-Müllerian hormone, 94
aromatase inhibitor use, 8, 91
assisted conception, 92–94
clinical features, 87
diabetes mellitus, 89–90
coating, 95
criteria, 14, 87
cycle cancellation, 96
definition, 14, 87
diet restriction, 16
embryo cryopreservation, 96–97
endometrium, 8
hCG dose, 95
in vitro fertilization, 93–94
in vitro maturation, 96–97, 186–187
insulin resistance, 16, 19
insulin sensitizers, 1
intraperitoneal insemination, 92–93
intravenous albumin, 96
laparoscopic ovarian diathermy, 91–92
letrozole, 91
luteal support, 93
metformin, 90–91
co-administration with gonadotropin stimulation, 95–96
miscarriage rate, 186–187
obesity, 87–88
OHSS, 113
prediction of severe, 109
prevention, 94
risk, 92, 94–97
ovarian cautery, 209–214
poly cystic ovarian syndrome (PCOS) (cont.)
patient characteristics, 15
pharmaceutical ovulation induction, 89–91
power Doppler, 225
recombinant FSH, 94
sex hormone-binding globulin, 19
vascular endothelial growth factor, 95, 96
weight loss, 88
poly cystic ovaries, 225
OHSS, 111
prediction, 112–113
poor responders to ovarian stimulation, 77–84
adjuncts to controlled ovarian stimulation, 82–83
androgen priming, 83
controlled ovarian stimulation, 175, 176
dehydropiandrostosterone, 83
FSH dose, 77
glucocorticoids, 83
GnRH agonists
flure protocol, 77–78
LH supplementation, 78
microdose flare, 79–80
mini-dose luteal phase, 79
plus luteal phase FSH, 79
stop protocols, 78
GnRH antagonists, 80–81
adjuncts, 81–82
estrogen priming, 81
microdose flare regimen, 80–81
gonadotropin therapy, 77
growth hormone adjunct, 82–83
in vitro maturation, 188
investigated protocols, 78
natural cycle IVF, 173–178
age of women, 177
cycles, 177
prednisolone, progesterone
combination for luteal phase support, 247
pregnancy
ectopic, 126
plo ractin levels, 197
see also multi-gestation pregnancy
pregnancy loss
clomiphene citrate, 4
in vitro maturation, 186–187
poly cystic ovarian syndrome, 186–187
pregnancy termination, OHSS, 126
premature follicular luteinization, 153
progesterone
controlled ovarian stimulation, 67–74
pathogenesis, 70–73
endometrial receptivity, 69, 70, 245
oocyte donors, 69–70
oocyte recipients, 70
follicular LH level elevation, 70–71
follicular phase secretion, 153
FSH administration, 72
GnRH agonist use, 46, 72
GnRH antagonist use, 72
hCG administration, 67, 73–74
outcome, 71
intrauterine insemination with mild ovarian hyperstimulation, 29
LH receptor sensitivity of granulosa cells, 71
LH sensitivity and ovarian response, 71
luteal phase role, 245
luteal phase support, 245
ascorbic acid combination, 247
aspirin combination, 248
co-treatments, 247–248
estradiol combination, 246–247
hCG induction of ovulation and luteinization, 47
hypogonadotropic anovulatory patients, 17
intramuscular, 246
oral, 245–246
prednisolone, 246
vaginal, 246
multivariant approach, 71–73
oocyte quality, 69, 70
oocyte donors, 69–70
oocyte recipients, 70
ovarian response, 73
pregnancy rate, 67–69, 73
premature luteinization, 67
serum accumulation of hCG from hMG, 71
thalassemia, 168
uterine-relaxing properties, 245
prolactin, 195–197
angiogenic effects, 196
anovalutary patients, 14
anti-angiogenic effects, 196
functions, 195–196
hypothyroidism effects, 199
measurement of levels, 202
pregnancy levels, 197
secretion, 195, 196
pulsatile, 197
regulation, 196–197
stimuli, 197–198
structure, 195
see also hyperprolactinemia
prolactin inhibitory factor (PIF), see dopamine
prolactin-releasing factors (PRF), 196
prolactin-releasing peptide 31, 197
prolactinoma, 198
protease inhibitors, hyperprolactinemia induction, 199
protocols for ovarian stimulation, 130–138
coasting, 136
conventional regimen, 130–131
dual suppression with oral contraceptives and GnRH agonists, 135–136
embryo cryopreservation, 136
GnRH agonists, 130–131, 132
hCG substitution, 137–138
micro-dose flare protocols, 132
GnRH antagonists, 130–131, 133, 136–137
growth hormone adjuvant treatment, 132, 146
hCG reduction, 136
high responders, 131, 134
long, 130–131
minimal stimulation, 133–134, 138
natural cycle, 134
normal responders, 131
poor responders, 131–134
natural cycle, 134
regimen development, 130
short, 130–131
quingalide (quinoglide), 204–205
OHSS prevention, 120
radiation therapy, hyperprolactinemia, 206
renal failure, hyperprolactinemia, 201
rosiglitazone, 19
letrozole combination, 8
Rotterdam consensus, polycystic ovarian syndrome, 14, 87
selective estrogen receptor modulators (SERMs), 1
semen preparation, intrauterine insemination with mild ovarian hyperstimulation, 31
sex hormone-binding globulin (SHBG), 19
single embryo transfer, 35–36
single nucleotide polymorphisms (SNPs), FSH receptor gene, 259
smoking
cessation for anovulatory patients, 16
FSH levels, 16
sonohysterography, 218, 221–222
Stein–Lewenthal syndrome, see polycystic ovarian syndrome (PCOS)
stress, IVF-related, 34
surgical interventions
Index

anovulatory patients, 20
hyperprolactinemia, 206
laparoscopic, 209
OHSS, 125–126
tamoxifen (tamoxiphene)
anovulatory patients, 18
with clomiphene citrate, 5
thalassemia, ovulation induction, 168
thromboembolism, OHSS
complication, 122
thrombophilia gene mutations, 9
thyrotropin-releasing hormone (TRH), 198
transvaginal hydrolaparoscopy, 211
transvaginal ultrasound-guided aspiration, 124
tuberoinfundibular dopamine pathway, 196
two cell–two gonadotropin hypothesis, 162
tyrosine hydroxylase, 119
ultrasound-guided transvaginal ovarian needle drilling (UTND), 211–212
ultrasound monitoring for ovulation induction, 217–230
adenomyosis, 218, 219
antral follicle count (AFC), 224–225
cervix evaluation, 222
endometrium, 219–221
assessment during ovulation induction, 230
normal, 221
polypsis, 223
polyps, 220–221, 222
hydrosalpinges, 227–228
methods, 228–230
Müllerian anomalies, 219
ovary assessment, 222–228, 230
pelvic peritoneum/tubes assessment, 217
perifollicular blood flow, 229–230
peritoneal/pseudoperitoneal cysts, 228, 229
problems encountered, 230
sonohysterography, 221–222
three-dimensional technique, 224, 229
timing, 229
transvaginal 2-dimensional, 228–229
uterine fibroids, 218
uterocervical angle, 223
VOCAL technique, 224, 229
see also ovarian cysts; ovaries; assessment; uterus
urofollitropin, 62
uterocervical angle, 223
uterus
anomalies, 219
arcuate, 219, 220
assessment, 217–218
bicornuate, 219, 220
fibroids, 217–218
ovulation induction pretreatment evaluation, 217
progesterone effects, 245
septate, 219
sonohysterography, 218, 221–222
subseptate, 219
unicornuate, 219, 220
vascular endothelial growth factor (VEGF)
expression in OHSS, 116–117, 118–119
polycystic ovarian syndrome, 95, 96
vascular endothelial growth factor receptors (VEGFR), OHSS, 110
venous thrombosis, OHSS
complication, 122
World Health Organization (WHO), anovulatory patient classification, 14
zuclomiphene, 2