Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

1

Introduction and overview

The arrival and popularity of multi-core processors have sparked a renewed
interest in the development of parallel programs. Similarly, the availability
of low-cost microprocessors and sensors has generated a great interest in
embedded real-time programs. Ada is arguably the most appropriate lan-
guage for development of parallel and real-time applications. Since it was
first standardized in 1983, Ada’s three major goals have remained:

e Program reliability and maintenance
e Programming as a human activity
e Efficiency

Meeting these goals has made Ada remarkably successful in the domain
of mission-critical software. It is the language of choice for developing soft-
ware for systems in which failure might result in the loss of life or prop-
erty. The software in air traffic control systems, avionics, medical devices,
railways, rockets, satellites, and secure data communications is frequently
written in Ada. Ada has been supporting multiprocessor, multi-core, and
multithreaded architectures as long as it has existed. We have nearly 30
years of experience in using Ada to deal with the problem of writing pro-
grams that run effectively on machines using more than one processor. While
some have predicted it will be another decade before there is a programming
model for multi-core systems, programmers have successfully used the Ada
model for years. In February 2007, Karl Nyberg won the Sun Microsystems
Open Performance Contest by building an elegant parallel Ada application
(Nyberg, 2007). The parallel Ada code he wrote a decade earlier provided
the foundation of this success.

It is estimated that over 99% of all the microprocessors manufactured
these days end up as part of a device whose primary function is not com-
puting (Turley, 1999). Today’s airplanes, automobiles, cameras, cell phones,

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

2 Introduction and overview

GPS receivers, microwave ovens, mp3 players, tractors, and washing ma-
chines all depend on the software running on the microprocessors embedded
within them. Most consumers are unaware that the software in their new
washing machine is far more complex than the software that controlled the
Apollo moon landings. Embedded systems interact with the world through
sensors and actuators. Ada is one of the few programming languages to
provide high-level operations to control and manipulate the registers and
interrupts of these input and output devices.

Most programs written for embedded systems are real-time programs. A
real-time program is one whose correctness depends on both the validity
of its calculations and the time at which those calculations are completed
(Burns and Wellings, 2009; Laplante, 2004). Users expect that their wireless
phone will convert and transmit their voice quickly and regularly enough
that nothing in their conversation is lost. Audio engineers quantify “quickly”
into the maximum amount of time that the analog to digital conversion,
compression, and transmission will take. They specify a set of deadlines.
A deadline is a point in time by which an activity must be completed.
Software engineers have the responsibility of ensuring that the computations
done by the software are completed by these deadlines. This responsibility
is complicated by the parallel nature of most real-time embedded software.
One embedded processor may be responsible for a number of related control
operations. Our wireless phone should not lose any of the video it captures
simultaneously with our talking. The software engineer must ensure that
all of the tasks competing for processor cycles finish their computations on
time.

1.1 Parallel programming

A parallel program is one that carries out a number of operations simulta-
neously. There are two primary reasons for writing parallel programs. First,
they usually execute faster than their sequential counterparts. The prospect
of greater performance has made parallel programming popular in scientific
and engineering domains such as DNA analysis, geophysical simulations,
weather modeling, and design automation. There are theoretical limits on
how much speedup can be obtained by the use of multiple processors. In
1967, Gene Amdahl published a classic paper (Amdahl, 1967) that showed
that if P is the fraction of a sequential program that can be run in parallel

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

1.1 Parallel programming 3

on N processors, the maximum speedup is given by the formula

1
P
1-P)+Z%

Thus, for example, if 80% of our program can be run in parallel, the maxi-
mum speedup obtained with four processors is

1

=25
0.8
(1-0.8)+2%

The second reason for writing parallel programs is that they are frequently
better models of the processes they represent. More accurate models are
more likely to behave in the manner we expect. As the real world is inherently
parallel, embedded software that interacts with its environment is usually
easier to design as a collection of parallel solutions than as a single sequential
set of steps. Parallel solutions are also more adaptable to new situations than
sequential solutions. We’ll show you some examples later in this chapter
where the parallel algorithm is far more flexible than the sequential version.
Before beginning our discussion of parallel programming, let’s take a brief
look at the hardware on which such programs execute.

1.1.1 Flynn’s taxonomy

Michael Flynn (1974) described a simple taxonomy of four computer archi-
tectures based on data streams and instruction streams. He classifies the
classic Von Neumann model as a Single stream of Instructions executing on
Single stream of Data (SISD). An SISD computer exhibits no parallelism.
This is the model to which novice programmers are introduced as they learn
to develop algorithms.

The simplest way to add parallelism to the SISD model is to add multi-
ple data streams. The Single stream of Instructions executing on Multiple
streams of Data (SIMD) architecture is often called array or vector pro-
cessing. Originally developed to speed up vector arithmetic so common in
scientific calculations, an SIMD computer applies a single instruction to mul-
tiple data elements. Let’s look at an example. Suppose we have the following
declarations of three arrays of 100 real values.

subtype Index_Range is Integer range 1..100;
type Vector is array (Index_Range) of Float;

A, B, C : Vector; — Three array variables

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

4 Introduction and overview

We would like to add the corresponding values in arrays B and C and store
the result in array A. The SISD solution to this problem uses a loop to apply
the add instruction to each of the 100 pairs of real numbers.

for Index in Index_Range loop

A (Index) := B (Index) + C (Index);
end loop;

Each iteration of this loop adds two real numbers and stores the result in
array A. With an SIMD architecture, there are multiple processing units for
carrying out all the additions in parallel. This approach allows us to replace
the loop with the simple arithmetic expression

A =B + C;

that adds all 100 pairs of real numbers simultaneously.

The Multiple stream of Instructions executing on a Single stream of Data
(MISD) architecture is rare. It has found limited uses in pattern match-
ing, cryptology, and fault-tolerant computing. Perhaps the most well-known
MISD system is the space shuttle’s digital fly-by-wire flight control sys-
tem (Knoll, 1993). In a fly-by-wire system, the pilot’s controls have no direct
hydraulic or mechanical connections to the flight controls. The pilot’s input
is interpreted by software which makes the appropriate changes to the flight
control surfaces and thrusters. The space shuttle uses five independent pro-
cessors to analyze the same data coming from the sensors and pilot. These
processors are connected to a voting system whose purpose is to detect and
remove a failed processor before sending the output of the calculations to
the flight controls.

The most common type of parallel architecture today is the MIMD (Mul-
tiple stream of Instructions executing on Multiple streams of Data) archi-
tecture. Nearly all modern supercomputers, networked parallel computers,
clusters, grids, SMP (symmetric multiprocessor) computers and multi-core
computers are MIMD architectures. These systems make use of a number
of independent processors to execute different instructions on different sets
of data. There is a great variety in the ways these processors access mem-
ory and communicate among themselves. MIMD architectures are divided
into two primary groups: those that use shared memory and those that use
private memory.

The simplest approach to shared memory is to connect each processor
to a common bus which connects them to the memory. The shared bus
and memory may be used for processors to communicate and to synchro-
nize their activities. Multi-core processors reduce the physical space used by
placing multiple processors (cores) on a single chip. Each core usually has its

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

1.1 Parallel programming 5

own small memory cache and shares a larger on-chip cache with its counter-
parts. In more complicated schemes, multiple processors may be connected
to shared memory in hierarchical or network configurations.

When each processor in an MIMD system has its own private memory,
communication among them is done by passing messages on some form of
communication network. There are a wide variety of interconnection net-
works. In static networks, processors are hardwired together. The connec-
tions in a static network can be made in a number of configurations including
linear, ring, star, tree, hypercube, and so on. Dynamic networks use some
form of programmable switches between the processors. Switching networks
may range from simple crossbar connections between processors in a single
box to the internet-connecting processors on different continents.

1.1.2 Concurrent programming

With the many different organizations of parallel hardware available, it
might seem that a programmer would need a detailed understanding of
the particular hardware they are using in order to write a parallel program.
As usual in our discipline, we are saved by the notion of abstraction. The
notion of the concurrent program as a means for writing parallel programs
without regard for the underlying hardware was first introduced by Edsger
Dijkstra (1968). Moti Ben-Ari (1982) elegantly summed up Dijkstra’s idea
in three sentences.

Concurrent programming is the name given to programming notation and tech-
niques for expressing potential parallelism and solving the resulting synchronization
and communication problems. Implementation of parallelism is a topic in computer
systems (hardware and software) that is essentially independent of concurrent pro-
gramming. Concurrent programming is important because it provides an abstract
setting in which to study parallelism without getting bogged down in the imple-
mentation details.

When a sequential program is executed, there is a single thread of control.
The instructions are executed one at a time in the order specified by the
program. A concurrent program is a collection of sequential processes.! Each
of these processes has its own thread of control that executes its instructions
one at a time, its own set of registers, and its own stack for local variables,
parameters, etc. Given adequate hardware, each process may execute on its
own processor using shared or private memory. A concurrent program may
1 The term process has specific and sometimes different meanings in the context of particular

operating systems. The term process in the context of concurrent programming is a general

term for a sequence of instructions that executes concurrently with other sequences of
instructions.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

6 Introduction and overview

also execute on a single processor system by interleaving the instructions
of each process. Between these extremes is the more common situation of
having N processes executing on M processors where N > M. In this case,
the execution of instructions from N processes is interleaved among the M
processors.

If the processes in a concurrent program are independent, we can write
each process in the same manner in which we write a sequential program.
There are no special concerns or requirements that the programmer must
address. However, it is rare that the processes in a concurrent program are
truly independent. They almost always need to share some resources or
communicate with each other to solve the problem for which the concurrent
program was written. Sharing and communication require programming lan-
guage constructs beyond those needed in sequential programs. In this chap-
ter we introduce the problems that we must resolve in concurrent programs
with interacting processes. Later, we present the Ada language features and
techniques for solving them.

Synchronization is a problem faced in any activity involving concurrent
processing. For example, suppose that Horace and Mildred are cooperating
in the cooking for a dinner party. They expect that the work will go faster
with two people (processors) carrying out the instructions in the recipes. For
the preparation of scalloped potatoes, Horace has taken on the responsibility
of peeling the potatoes while Mildred will cut them into thin slices. As it is
easier to peel a whole potato rather than remove peels from individual slices
of potato, the two have agreed to synchronize their operations. Mildred will
not slice a potato until Horace has peeled it. They worked out the following
algorithms:

Horace’s scalloped potato instructions
while there are still potatoes remaining do
Peel one potato
Wait until Mildred is ready for the potato
Give Mildred the peeled potato
end while

Mildred’s scalloped potato instructions

loop

Wait until Horace has a peeled potato

Take the peeled potato from Horace

Slice the potato

Place the potato slices in the baking dish

Dot the potato slices with butter

Sprinkle with flour

Exit loop when Horace has peeled the last potato
end loop

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

1.1 Parallel programming 7

Communication among processes is another activity present in nearly all
concurrent activities. Communication is the exchange of data or control
signals between processes. In our cooking example, Horace communicates
directly with Mildred by handing her a peeled potato (data). Further com-
munication is required to let Mildred know that he has peeled the last potato
(a control signal).

What happens when Mildred’s potato slicing is interrupted by a phone
call? When Horace finishes peeling a potato, he must wait for Mildred to
complete her phone call and resume her slicing activities. Horace’s frustra-
tion of having to hold his peeled potato while Mildred talks to her mother
can be relieved with a more indirect communication scheme. Instead of hand-
ing a peeled potato directly to Mildred, he can place it in a bowl. Mildred
will take potatoes out of the bowl rather than directly from Horace. He can
now continue peeling potatoes while Mildred handles the phone call. Should
Horace need to answer a knock at the front door, Mildred may be able to
continue working on the potatoes that he piled up in the bowl while she
was on the phone. The bowl does not eliminate all waiting. Mildred cannot
slice if there is not at least one potato in the bowl for her to take. She must
wait for Horace to place a peeled potato into the bowl. Horace cannot con-
tinue peeling when the bowl is completely full. He must wait for Mildred to
remove a potato from the bowl to make room for his newly peeled potato.

Our concurrent scalloped potato algorithm is an example of the producer-
consumer pattern. This pattern is useful when we need to coordinate the
asynchronous production and consumption of information or objects. In
Chapter 4 we’ll show you how Ada’s protected object can provide the func-
tionality of the potato bowl and in Chapter 5 you will see how Ada’s ren-
dezvous allows processes to communicate directly with each other.

Mutual exclusion is another important consideration in concurrent pro-
gramming. Different processes typically share resources. It is usually not
acceptable for two processes to use the same resource simultaneously. Mu-
tual exclusion is a mechanism that prevents two processes from simultane-
ously using the same resource. Let’s return to our cooking example. Suppose
that Mildred is currently preparing the cake they plan for dessert while Ho-
race is preparing the marinade for the meat. Both require use of the 5 ml
(1 teaspoon) measuring spoon. Mildred cannot be measuring salt with the
spoon at the same time Horace is filling it with soy sauce. They must take
their turns using the shared spoon. Here are the portions of their cooking
algorithms they worked out to accomplish their sharing:

Horace’s marinade instructions
Wait until the 5 ml measuring spoon is on the spoon rack

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

8 Introduction and overview

Remove the 5 ml measuring spoon from the rack
Measure 10 ml of soy sauce

Wash and dry the 5 ml measuring spoon

Return the 5 ml measuring spoon to the spoon rack

Mildred’s cake instructions

Wait until the 5 ml measuring spoon is on the spoon rack
Remove the 5 ml measuring spoon from the rack
Measure 5 ml of salt

Wash and dry the 5 ml measuring spoon

Return the 5 ml measuring spoon to the spoon rack

This example illustrates a set of steps for using a shared resource. First,
some pre-protocol is observed to ensure that a process has exclusive use of
the resource. In our cooking example, Horace and Mildred use the fact that
the rack on which they hang their measuring spoons cannot be accessed by
two people at the same time in their small kitchen. Second, the resource is
used for a finite amount of time by a single thread of control (a person in
our cooking example). This stage of mutual exclusion is called the critical
section. A critical section is a sequence of instructions that must not be
accessed concurrently by more than one thread of execution. In our example,
the critical section is the use of the 5 ml measuring spoon. After the critical
section, the fourth and final step, the post-protocol, is carried out. The
post-protocol signals an end of the exclusive use of the shared resource.
In our example, the post-protocol consists of cleaning the measuring spoon
and returning it to the spoon rack.

Mutual exclusion is a static safety property (Ben-Ari, 1982). The require-
ment that each critical section excludes other processes from using the re-
source (Mildred and Horace cannot both be filling the 5 ml spoon) does
not change during the execution of the instructions. It is possible to have
safety features that adversely affect the dynamic behavior of a system. For
example, we could make a hand-held electric power saw completely safe by
cutting off the power cord. However, such a drastic safety measure precludes
us from using the saw for its primary purpose. The safety provided by mutual
exclusion can also disrupt our system so that its goals remain unfulfilled.
Returning to our cooking example, Mildred and Horace have devised the
following algorithms for sharing two different measuring spoons.

Horace’s deadly embrace
Wait until the 5 ml measuring spoon is on the spoon rack
Remove the 5 ml measuring spoon from the rack
Wait until the 15 ml measuring spoon is on the spoon rack
Remove the 15 ml measuring spoon from the rack
Measure 20 ml of soy sauce

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

1.1 Parallel programming 9

Wash and dry the 15 ml measuring spoon

Return the 15 ml measuring spoon to the spoon rack
Wash and dry the 5 ml measuring spoon

Return the 5 ml measuring spoon to the spoon rack

Mildred’s deadly embrace

Wait until the 15 ml measuring spoon is on the spoon rack
Remove the 15 ml measuring spoon from the rack

Wait until the 5 ml measuring spoon is on the spoon rack
Remove the 5 ml measuring spoon from the rack

Measure 20 ml of salt

Wash and dry the 5 ml measuring spoon

Return the 5 ml measuring spoon to the spoon rack

Wash and dry the 15 ml measuring spoon

Return the 15 ml measuring spoon to the spoon rack

These steps certainly prevent Horace and Mildred from using the same
measuring spoon simultaneously. The cooking for most dinner parties goes
without problem. However, one day, when the guests arrive they find no
meal and Horace and Mildred waiting in the kitchen. This is an example
of deadlock. Deadlock means that no process is making progress toward
the completion of its goal. Can you see what happened in the kitchen that
fateful day?

Use of scenarios is a common way to uncover the potential for deadlock
in a concurrent program. A scenario is one possible sequence of events in
the execution of a concurrent set of instructions. Here is one scenario that
results in the deadlock observed in the kitchen.

Mildred finds that the 15 ml measuring spoon is available

Mildred removes the 15 ml measuring spoon from the rack

Horace finds that the 5 ml measuring spoon is available

Horace removes the 5 ml measuring spoon from the rack

Horace finds that the 15 ml measuring spoon is not available and waits
Mildred finds that the 5 ml measuring spoon is not available and waits

SRR

Our two cooks become deadlocked when each of them holds the measuring
spoon that the other needs to continue. This problem may arise any time that
a process requires multiple resources simultaneously. How is it possible that
previous dinner parties have come off without problem? Here is a scenario in
which everything goes smoothly with the sharing of the measuring spoons.

Mildred finds that the 15 ml measuring spoon is available
Mildred removes the 15 ml measuring spoon from the rack
Mildred finds that the 5 ml measuring spoon is available

==

Mildred removes the 5 ml measuring spoon from the rack

© in this web service Cambridge University Press

www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19716-8 - Building Parallel, Embedded, and Real-Time Applications with Ada
John W. McCormick, Frank Singhoff and Jerome Hugues

Excerpt

More information

10 Introduction and overview

Horace finds that the 5 ml measuring spoon is not available and waits
Mildred measures 20 ml of salt

Mildred washes and dries the 5 ml measuring spoon

Mildred returns the 5 ml measuring spoon to the spoon rack

© 0N

Horace finds that the 5 ml measuring spoon is available

10. Horace removes the 5 ml measuring spoon from the rack

11. Horace finds that the 15 ml measuring spoon is not available and waits
12. Mildred washes and dries the 15 ml measuring spoon

13. Mildred returns the 15 ml measuring spoon to the spoon rack

14. Horace finds that the 15 ml measuring spoon is available

15. Horace removes the 15 ml measuring spoon from the rack

16. and so on... Fach cook has used both spoons successfully

The simplest solution to the form of deadlocking seen in the first scenario is
to forbid the simultaneous use of multiple resources. In our kitchen we could
restructure the two algorithms so that each cook takes one measuring spoon,
uses it, and returns it before taking the second spoon. There is no reason
that each cook needs both measuring spoons at a given time. However, there
are times when processes do need multiple resources simultaneously. For
example, a cook may need both a measuring spoon and a bowl to complete
a particular mixing chore. A common solution for avoiding deadlock in this
situation is to require that all processes obtain the resources in the same
order. If our two cooks are required to obtain the 5 ml spoon before obtaining
the 15 ml spoon, they will avoid deadlock. The first cook to take the 5 ml
spoon will be able to obtain the 15 ml spoon as well. The second cook will
wait for the 5 ml spoon to be returned to the rack and will not, in the
meantime, try to obtain the 15 ml spoon.

Now that you understand scenarios, you may notice another potential
problem in our mutual exclusion examples. Suppose one cook observes that
the 5 ml measuring spoon is on the rack. But before they remove it, the
other cook also observes that the spoon is on the rack and removes it. The
first cook is now baffled by the disappearance of the spoon they recently
observed. Our pre-protocol consisted of two separate steps: observing and
removing. For this example and for all other mutual exclusion protocols
to succeed, the pre-protocol must be completed as an atomic action. An
atomic action is an action that cannot be interrupted. The observation
of the spoon must be immediately followed by its removal. Fortunately for
our cooks, the kitchen is so small that when one cook is checking the spoon
rack, there is no room for the other cook to approach it. Our observe and
remove is done as an atomic action.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521197168
http://www.cambridge.org
http://www.cambridge.org

