ABVD regimen (adriamycin, bleomycin, vinblastine and dacarbazine) 14, 18, 329
AC–T regimen (adriamycin and cyclophosphamide) 51
AC regimen (adriamycin and cyclophosphamide) 51, 55, 66
achondroplasia 103
acrosomal membrane integrity (AMI) 189
active specific immunotherapy 44
activins 116, 411
acutelymphoblastic leukemia (ALL) 13, 75
acutepromyelocytic leukemia (APL) 39
adaptive immuneresponse 43
adenomatous polyposis coli (APC) 36, 38
Adjuvant Online 52
adjuvant therapy
breast cancer
newer treatments and additional benefits 51–2
risk of recurrence and reduction 50
adolescent and young adult cancer epidemiology 86–8
international classification 88
risk factors 95
cervical cancer 95–6
melanoma 95
testicular cancer 95
thyroid cancer 96
adoptive T-cell therapy 44
alcohol consumption, parental 94
algnate 413
algnate 414
all-trans-retinoic acid (ATRA) 39
allotransplantation 201
amenorrhea 12, 14, 49
breast cancer treatment 65
incidence 65
fertility loss 54–5
survival 50–1
risk 16
amino acid sequences 451
amphiaregulin 121, 423–4
anaplasis 39
anastomosis 251
end-to-side 384
microvascular 383–4
sleeve 384
whole ovary transplantation 338–9
advantages and disadvantages 339
androgens 121
Angelman’s syndrome 102
angiogenesis 449
angiogenic switch 41
angiogenin 449
angiopeoitin 333
anomalous donation
oocytes 317, 318
sperm 231–3
anthracyclines 65
antibody dependent cellular cytotoxicity (ADCC) 44
anti-emetics 64
anti-growth signaling 40–1
anti-Müllerian hormone (AMH) 13, 25, 115, 116, 329
antral follicle count (AFC) 13
apoptosis 38, 101, 110
evasion by cancer cells 41
germline 103
ability 105
DNA damage 103–5
prosurvival factors in spermatozoa 109–10
spermiogenesis 105–6
chromatin remodeling 106–7
importance 107–9
Aristotle 1
aromatase inhibitors
teratogenity 64
artificial bladder 415
artificial ovary 308, 448–56
assembly 450
bioactivity 452
biocompatibility 453–4
biodegradability 453
crystallinity 451
interaction with cells/follicles 450–1
morphology 451
natural ovary 450
physical support 452
porosity 452
requirements 450
scaffold handling 454
surface 451–2
vascularization 452–3
fertility re-establishment strategy 448
advantages 449
follicle number and quality 450
follicular development 449
follicular growth 449–50
follicular survival 449
tissue engineering 454–6
ascorbic acid 379
Aspert’s syndrome 103
assisted conception 1
assisted reproductive technology (ART) 1, 101–2
cryocooling 132
cryopreserved embryos 138
ataxia telangiectasia 40
Austin, Colin “Bunny” 3
autoimmune diseases 28–9
autotransplantation 201, 213
5-azacytidine 442
azoospermia 18
chemotherapy 75, 76
BAD 109
base excision repair (BER) 40
basic fibroblast growth factor (bFGF) 115, 202, 333, 411, 449
BEACOPP regimen (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisolone) 14, 18
Beckwith–Wiedmann syndrome 102
benign tumors 35
benzo[a]pyrenes 103
BEP regimen (bleomycin, etoposide and cisplatin) 274
betacellulin 121, 423
bilateral salpingo-oophorectomy 269, 270
biocompatibility 452
biparental androgenomes 443
biparental gnogenomes 443
birth defects 102

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>blastoma 35</td>
</tr>
<tr>
<td>bone density and GnRH agonist use 242</td>
</tr>
<tr>
<td>bone marrow transplantation (BMT) 14</td>
</tr>
<tr>
<td>ovarian failure rates 15</td>
</tr>
<tr>
<td>bone morphogenic proteins (BMPs) 115</td>
</tr>
<tr>
<td>BMP4 116, 410, 411</td>
</tr>
<tr>
<td>BMP7 116, 410, 411</td>
</tr>
<tr>
<td>BMP15 117, 118</td>
</tr>
<tr>
<td>borderline ovarian tumors (BOTs) 266–7</td>
</tr>
<tr>
<td>fertility results 269–70</td>
</tr>
<tr>
<td>limits of surgery 268–9</td>
</tr>
<tr>
<td>disease stage 268</td>
</tr>
<tr>
<td>histological subtype 268</td>
</tr>
<tr>
<td>serous tumor with MP pattern 268</td>
</tr>
<tr>
<td>ovarian induction or IVF 270</td>
</tr>
<tr>
<td>recurrence rates 269</td>
</tr>
<tr>
<td>surgery and outcomes 267</td>
</tr>
<tr>
<td>survival following surgery 267–8</td>
</tr>
<tr>
<td>Bourn Hall Clinic 5</td>
</tr>
<tr>
<td>brain tumors 91</td>
</tr>
<tr>
<td>BRCA mutations 62, 63</td>
</tr>
<tr>
<td>breast cancer 49, 57, 69</td>
</tr>
<tr>
<td>adjuvant therapy newer treatments and additional benefits 51–2</td>
</tr>
<tr>
<td>risk of recurrence and reduction 50</td>
</tr>
<tr>
<td>amenorrhea 65</td>
</tr>
<tr>
<td>amenorrhea and fertility loss 54–5</td>
</tr>
<tr>
<td>amenorrhea and survival 50–1</td>
</tr>
<tr>
<td>ART time between treatment and pregnancy 311</td>
</tr>
<tr>
<td>contraception in aftermath 68</td>
</tr>
<tr>
<td>endocrine therapy and reproductive function 66</td>
</tr>
<tr>
<td>fertility preservation 66</td>
</tr>
<tr>
<td>adjuvant therapy delay 56</td>
</tr>
<tr>
<td>barriers to 55</td>
</tr>
<tr>
<td>controlled ovarian stimulation (COS) 56</td>
</tr>
<tr>
<td>cost 55</td>
</tr>
<tr>
<td>donor eggs and surrogacy 67</td>
</tr>
<tr>
<td>embryo cryopreservation 66–7</td>
</tr>
<tr>
<td>oocyte preservation 67</td>
</tr>
<tr>
<td>ovarian harvest 56</td>
</tr>
<tr>
<td>ovarian tissue cryopreservation 67 suppression of ovarian function 67–8</td>
</tr>
<tr>
<td>incidence 62</td>
</tr>
<tr>
<td>lactation in aftermath 69</td>
</tr>
<tr>
<td>occurrence 49</td>
</tr>
<tr>
<td>ovarian failure rates 15</td>
</tr>
<tr>
<td>pregnancy following diagnosis 55</td>
</tr>
<tr>
<td>pregnancy in aftermath 68–9</td>
</tr>
<tr>
<td>pregnancy-associated 63–4</td>
</tr>
<tr>
<td>biopsy 63</td>
</tr>
<tr>
<td>chemotherapy 64</td>
</tr>
<tr>
<td>diagnosis 63</td>
</tr>
<tr>
<td>incidence 63</td>
</tr>
<tr>
<td>treatment 63</td>
</tr>
<tr>
<td>recurrence 68</td>
</tr>
<tr>
<td>risk of recurrence controlled ovarian stimulation (COS) 56 high risk patients 56</td>
</tr>
<tr>
<td>standard regimens and modifications 51</td>
</tr>
<tr>
<td>ER+ tumors 52–3</td>
</tr>
<tr>
<td>ER– tumors 53–4</td>
</tr>
<tr>
<td>therapy and reproduction 62 treatment ovarian function 64–6 reproductive function 64 young women 62–3</td>
</tr>
<tr>
<td>breastfeeding 92–3</td>
</tr>
<tr>
<td>Brown, Louise 4</td>
</tr>
<tr>
<td>Burkitt’s lymphoma (BL) 92</td>
</tr>
<tr>
<td>buserelin 244</td>
</tr>
<tr>
<td>1-buthionine-[S,R]-sulphoximine (BSO) 107</td>
</tr>
<tr>
<td>cancer “pre-vivor” 488</td>
</tr>
<tr>
<td>cancer treatments, effect on reproductive system 11, 18–19</td>
</tr>
<tr>
<td>chemoprotection 18</td>
</tr>
<tr>
<td>chemotherapy and testicular function 17–18</td>
</tr>
<tr>
<td>ovarian damage from chemotherapy clinical detection 12–13</td>
</tr>
<tr>
<td>nature of damage 13–14 risk of ovarian failure 14, 15</td>
</tr>
<tr>
<td>radiotherapy and testis 18</td>
</tr>
<tr>
<td>radiotherapy and the hypothalamic–pituitary–ovarian axis 14–17</td>
</tr>
<tr>
<td>radiotherapy and the uterus 17</td>
</tr>
<tr>
<td>cancer, biological basis 35, 45 hallmarksof cancer 40 angio genesis, sustained 41–2 anti-growth signal</td>
</tr>
<tr>
<td>insensitivity 40–1</td>
</tr>
<tr>
<td>apoptosis evasion 41</td>
</tr>
<tr>
<td>genomic instability 42–3 growth signaling self-sufficiency 40</td>
</tr>
<tr>
<td>invasion and metastasis 42 limitless replicative potential 41</td>
</tr>
<tr>
<td>molecular pathogenesis 37</td>
</tr>
<tr>
<td>cell cycle and checkpoint abnormalities 38</td>
</tr>
<tr>
<td>cell death defects 38–9</td>
</tr>
<tr>
<td>differentiation aberrations 39</td>
</tr>
<tr>
<td>DNA damage repair system failures 39 growth factor signaling 37–8 signal transduction molecules 38 origins cancer stem cell theory (CSC) 36–7 oncogenes and tumor suppression genes 35–6 stepwise accumulation of mutations 36</td>
</tr>
<tr>
<td>transformation of normal cells 35 carbohydrates for cryopreservation 178</td>
</tr>
<tr>
<td>carboplatin 52, 55</td>
</tr>
<tr>
<td>carcinoembryonic antigen (CEA) 44</td>
</tr>
<tr>
<td>carcinoma 35</td>
</tr>
<tr>
<td>Cut Standard Straw (CSS) 186</td>
</tr>
<tr>
<td>β-catenin 119</td>
</tr>
<tr>
<td>CEF regimen (cyclophosphamide, epirubicin and fluorouracil) 51, 65</td>
</tr>
<tr>
<td>cell cycle abnormalities 38</td>
</tr>
<tr>
<td>cell death defects 38–9</td>
</tr>
<tr>
<td>cell-mediated immune response 43</td>
</tr>
<tr>
<td>cervical cancer adolescents and young adults 95–6 surgery 257–8, 263</td>
</tr>
<tr>
<td>assessment 262–3 experience of surgical team 261–2 experience worldwide 262</td>
</tr>
<tr>
<td>technique 258–61</td>
</tr>
<tr>
<td>cervical intraepithelial neoplasia 262</td>
</tr>
<tr>
<td>Chang, M. C. 3</td>
</tr>
<tr>
<td>chemoprotection 18</td>
</tr>
<tr>
<td>chemotherapy breast cancer 50, 64 ovarian damage clinical detection 12–13 nature of damage 13–14 risk of ovarian failure 14, 15 ovaries 73–4</td>
</tr>
<tr>
<td>testes 75–6</td>
</tr>
<tr>
<td>childhood cancers 11</td>
</tr>
<tr>
<td>epidemiology 83–6</td>
</tr>
<tr>
<td>international classification 84 children from oocyte donation fears of parents 319</td>
</tr>
<tr>
<td>children from sperm donation 231</td>
</tr>
<tr>
<td>disclosure 233–5 age of disclosure 235</td>
</tr>
<tr>
<td>religious and cultural influences 234 shame 233</td>
</tr>
<tr>
<td>chlorambucil 18, 25</td>
</tr>
<tr>
<td>azoospermia 75</td>
</tr>
<tr>
<td>chlorotetracycline (CTC)–Hoechst 33258 staining 181</td>
</tr>
</tbody>
</table>
Index

ChlVPP regimen (chlorambucil, vinblastine, procarbazine and prednisolone) 14, 18
Christian ethics in fertility preservation 497, 504
moral stances 499–504
theological and biblical precepts 497–9
chromatin protamination assay 104
chromatin remodeling 106–7
chronic myelogeneous lymphoma (CML) 334
cisplatin 27
CMF regimen (cyclophosphamide, methotxate and fluorouracil) 50, 51, 55, 65
collagen 413, 414
collagenase 402
colonization 42
Comet assay 102
communication between oocyte and granulosa 399
communication during therapy lack of recall following fertility information 470
provider communication 470–1
cryobiology 129, 140
classical techniques 129–30
slow freezing 130–1
toxicity and osmotic effects of CPAs 131–2
preservation of cells and tissues embryos 138–9
oocytes 136–7
ovarian tissue 137–8
spermatzoa 135–6
vitrification 132–3
equilibrium and non-equilibrium methods 133–5
cryoinjury
ovarian tissue 330–2
Cryoloop 180, 297
cryopreservation spermatzoa 176, 193
fertilization properties 187
cryoprotectant toxicity neutralization (CTN) 156, 157
cryoprotectant–water mutual diffusivity 138
cryoprotective agents (CPAs) 26, 130
cytotoxicity 330
diffusion rates 137
discovery 328
osmotic effects 284
ovarian tissue 347–8
toxicity and osmotic effects 131–2, 135
Cryotop method 26
cryptorchidism 95
cystic fibrosis screening 317
cytokines 43
cytoplasmic membrane integrity (CMF) 189
cytoxic therapies testicular function 17
Dalenpatusi 2
dangerous temperature region (DTR) 132
delayed first pregnancy 431
deleted in azoosperma-like (DAZL) 202
designer babies 482, 483
creating a donor child 482
sex selection 482
destruction of embryos 435
developmental competence 397
devitrification 134, 150, 152
dibromochloropropane (DBCP) 164
diet, parental 92–3
differentiation of cells 39
dimethyl sulfoxide (DMSO) 131, 134, 136, 146, 147, 157, 284
disease modifying antirheumatic drugs (DMARDS) 25
DNA damage 110
germ line apoptosis 103–5
spermatzoa 101–2
smoking 103
spermiogenesis 105–6
chronatin remodeling 106–7
importance of apoptosis 107–9
DNA damage repair systems 39
DNA fragmentation 189
donor insemination (DI) 233
donors of oocytes, recruitment 316–17
doubly- unstable glass 150
drugs see recreational drugs
dysplasia 39
Edwards, Robert 3, 5
ejaculation, retrograde 78
elastic strain 153
elective limited insemination (ELI) 295, 297
electrocaugulation 25
electroejaculation 78, 228
embryo cryopreservation 26, 66–7, 77, 138–9
embryo freezing program 280
results 280
ethical concerns 31
fertility preservation 279, 281
outcomes 279–80
ovarian stimulation protocols 280–1
results of replacements in oncologic patients 281
successful births 279
vitrification 139, 280
embryo transfer (ET) 4
endocrine neoplasia 103
endometriosis 23, 25
indications for fertility preservation 30
endometrial sinus tumors (EST) 274
end-to-side anastomosis 384
epidermal growth factor (EGF) 121
epidermal growth factor receptor (EGFR) 121, 122
epigentic memory 441
epigetic reprogramming 443
epigenic regulation 441–2
epigenome 441
epiregulin 121, 423
epithelial ovarian cancer (EOC) 397
fertility results 272
indications for surgery 270–2
literature reviews 271
surgical procedure 272
epithelial–mesenchymal transition (EMT) 42
epitopes 391
Epstein–Barr virus (EBV) 92
equilibrium cryopreservation 130
equilibrium vitrification 133
equilibrium slow freezing 130
estradiol levels 29
estradiol patches 322
estrogen receptor-positive tumors 426
estrogen receptors (ERs) 50
1,N6-ethenoadenosine 104
1,N2-ethenoguanosine 104
ethical concerns 485–6
ART clinics 485
embryofreezing 31
future use following death of parent 280
fertility preservation 479–80
adults 480
children 480–1
financial compensation for donors 316, 317
future trends 479, 483–5
legality of donation 316
ovarian cryopreservation and re-transplantation 483
“ownership” of frozen oocytes 297
pre-implantation genetic diagnosis (PGD) 482
spermatogonia, transplantation of cryopreserved 206
stem cell research 483–5
embryo research 484
legality 484
moral status of embryo 484
spare embryos 485
testicular cell and tissue transplantation 219
use of donor gametes 481–2
disclosure to children 481–2
international variations 482
ethylene glycol (EG) 151
Ewing’s sarcoma 75
extracellular matrix (ECM) 41, 409, 414, 449
extravasation 42
extrremely low-frequency electromagnetic fields (ELF-MF) 90–1
FAc regimen (fluorouracil, adriamycin and cyclophosphamide) 51, 66
Faddy–Gosden model for natural oocyte decline 16
Fallopian tubes 115
false hope potential of therapies 483
familial cancers 40
family members as sperm donors 232
FEC regimen (fluorouracil, epirubicin and cyclophosphamide) 51, 55
female fertility decline with age 431
female hormones, exogenous 29
Fertile Hope 57
fetal calf serum (FCS) 402
fibronectin 414
fluorescence activated cell sorting (FACS) 204, 205, 213
follicle cryopreservation 305–6
artificial ovary 308
isolation of follicles 306–7
transplantation 307–8
follicle population decay curve 460
follicle stimulating hormone (FSH) 12, 66, 114
abnormal levels 378
direct and indirect effects 245
flare response 240–1
indirect effect of suppression 246
male hormone suppression 165
ovarian expression 246
ovarian tissue transplantation (OTT) 377
follicles
co-culture systems 414–15
three-dimensional culture systems 412–14
follicles, molecular and cellular integrity in culture 389–90
functional properties 391
future prospects 393–4
somatic cell components 390–2
 genomic integrity 391
hypertrophy over time 390
supporting and maintaining oogenesis 392–3
follicle-to-stroma paracrine signaling 411
follicular development 114, 123
classification 344
stages 114–15
1. primordial to pre-antral 115–17, 342, 352
2. pre-antral to antral 117–19
3. antral to meiosis
 resumption 119–21
4. ovulation and luteinization 121–3
follicular diameter 452
follicular fluid meiosis activating sterol (FF-MAS) 121
folliculogenesis 409, 450
role of stromal cells 410–11
stromal tissue 409
 follistatin 411
FOX1 115
Foxo3 115
Foxo3a 116
fracturing in vitrification solutions 154
freedom of choice 502
frozen–thawed ovarian tissue 7, 26
frozen–thawed embryo (FET) 433
gamete intrafallopian transfer (GIFT) 1, 4, 6
GATA binding protein 4 (GATA4) 202
GDNP family receptor alpha-1 (GFRα1) 202
genes and predictions 460
 genomic integrity 391
germ stem cells in adults 11
germinal vesicle 119, 296
germinal vesicle breakdown 119
Gibbs free energy 148
glass transition temperature 132, 150
glial cell line-derived neurotrophic factor (GDNF) 202, 203
glutathione transferase 246
glycerol 178, 284
GrfH agonists 6, 23, 27, 29, 239
breast cancer 51
clinical data about ovarian reserve 242, 243, 245
clinical trials data 244–2
clinical use
dose 241
flare response 240–1
ovarian reserve 241–2
side effects 241
direct and indirect effects 245
immunological effect 247
mechanism of action 239–40
ovarian impact 244
ovarian protection, hypothetical mechanisms 247
ovarian stromal blood flow 244–5
 suppression of ovarian function 67
GnrH analogues 18
gonadal medical protection 27
gonadotrophin deficiency 16
gonadotrophin-releasing hormone (GnRH) 66
ovarian expression 245–6
ovarian steroidogenesis 239
gonadotrophins 119
goserelin 51, 53, 244
Graff, Reiner de 2
Graffian follicles 410
granulocyte-colony stimulating factors 64
granulosa cells (GCs) 12, 13, 24, 114
poliferation 352
green fluorescent protein (GFP) 200, 443
Index

growth differentiation factor 9 (GDF-9) 117, 118, 393, 411
growth factor signaling 37–8
growth signaling 40
Harvey, William 1
healing 499
Heap, Walter 3
hematopoietic stem cell transplantation (HSCT) 209
Hemi-straw 297
hepatocyte growth factor (HGF) 115
Her-2 neu receptor 50
hereditary breast ovarian cancer (HBOC) syndrome 63
heterotopic autotransplantation 251, 336, 334–7
endocrine function re-establishment 336
hormone profile 336
heterotropic grafting 352
Hippocrates 1
histidine–tryptophan–ketoglutarate (HTK) solution 345
historical perspective 1–8
HIV infection 92
lesbian, gay, bisexual and transgender (LGBT) fertility preservation 469
letrozole 29, 56, 67
leukemia 18
leukemia inhibitory factor (LIF) 116
leuprolide 241, 242, 247
Leydig cells 17, 18, 75, 165
dysfunction following chemotherapy 18
effect of radiation on function 77
Liberase 306
Li–Frameni’s syndrome 63
liquid helium 180
liquid nitrogen 129, 132, 133, 154
love of neighbor 499
luteal cells (LCs) 122
luteinizing hormone (LH) 16, 114
male hormonesuppression 165
luteinizing hormone receptors (LHRs) 118, 410, 411
magnetic-activated cell sorting (MACS) 213
males, chemotherapeutic effects 225
anejaculatory men either oligospermic or normospermic 227–8
chance recovery of spermatogenesis 226
sperm banking 225–6
sperm use following treatment 227
treatment options for azoospermic men 226, 228–30
azoospermic before treatment 227
cryopreserved sperm 226–7
third party donation 230–1
underlying medical conditions 230
males, fertility preservation strategies 209, 219–20
beneficiaries 209
ethical concerns 219
fertility restoration 211
testicular germ cell transplantation 211
immature testicular tissue 210
tissue pieces 210–11
whole testis 211
indications 210
options before gonadotoxic therapies 210
safety considerations
birth defect risks 219
cancer cell contamination 217–18
infectious transmission 219
studies in cryopreservation 212
testicular cell grafting 216–17
testicular stem cells, fresh efficiency 213
outcome 211–13
SSC enrichment and expansion 213
testicular stem cells, frozen 213–14
clinical applications 214
testicular tissue grafting 214
testicular tissue, fresh 214–15
xenotransplantation 216
testicular tissue, frozen 215
xenotransplantation 216
males, hormonal suppression 164
animal models 165–8
clinical trials 168–9
hormone suppression treatments 168
historical development 164–5
interspecies differences 169–72
summary of effects 170
testicular function, effect upon 165
malignant germ cell tumors (MGCTs) 274
fertility 273
malignant tumors 35
mannotil 379
Maternal Antigen That Embryos Require (MATER) 119
matrix metalloproteinases (MMPs) 41, 42, 122
maximum tensile stress 154
medroxyprogesterone acetate (MPA) 246
meiosis in fetal ovary 114
meiotic competence 397
meiotic spindle 285
changes with age 285
recovery 286
melanoma
adolescents and young adults 95
melatonin 379
menopause 54
predictability 463–4
mental health professionals (MHPs), counseling role in ART 230
addressing shame issues 233
infertility counselors 233
metastases 42
metformin 425
microdissection testicular sperm extraction (mTESE) 226, 227, 228, 229
micropapillary serous carcinoma (MP) 266
microtubule organizing center (MTOC) 285
minimal residual disease (MRD) 334
Mirena progesterone-delivery system 68
mismatch repair (MMR) enzymes 40
mitochondrial membrane potential (MMP) 182, 188, 189
mitogen-activated protein kinase (MAPK) 119, 121
mortality of water 156
mortality of water-bonding groups 156
MOPP regimen (mechlorethamine, vincristine, procarbazine and prednisolone) 14
Mudhopadhyay, Subash 3
multiple pregnancies 7
Multi-Thermal-Gradient freezing device 369
mustine 18
mutations 36
nafarelin 244
nasopharyngeal carcinoma (NPC) 92
Newton, Henry 3
Newton’s law of cooling 133
Nijmegen breakage syndrome (NBS) 40
nitric oxide (NO) 120
nitrogen mustard 76
non-anonymous donation of oocytes 317, 318
sperm donation 231
family members 232
non-cancer patients 23–4, 31
fertility preservation procedures 25–6
embryo cryopreservation 26
gonadal medical protection 27
in vitro maturation 27–8
oocyte vitrification 26, 29
ovarian tissue cryopreservation 26–7, 28
transposition of ovaries 28
indications for fertility preservation 28
autoimmune diseases 28–9
bone marrow transplantation 33
endometriosis 30
ovarian borderline tumors 30–1
postponement of childbearing (age) 29–30
routine gynecological situations 31
Turner’s syndrome 30
ovarian damage 24–5
age 24
ovarian reserve (cont.)
qualitative assessment 12
ultrasound assessment 13
ovarian reserve tests (ORTs) 425
ovarian senescence, early 460–1, 463
hormonally sensitive cancers 314–15
oocyte donors 320
dual suppression 320
GnRH agonist trigger for ovulation 320–1
protocols 280–1
IVF 6
letrozole 280
tamoxifen 280
ovarian tissue cryopreservation 23, 26–7, 28, 67, 77, 137–8, 342, 364
cryopreservation technique 347
cooling rate 349–50
cryoprotectants 347–8
developmental potential 352
evaluating efficiency 351
storage 350
vitrification 350
heterotopic autotransplantation 364
human tissue characteristics 342–5
follicle classification 344
primordial stage follicles 342, 352
indications 357
malignant and non-malignant diseases 358
methodology 343
preparation 345–6
tissue dissection 346–7
orthotopic autotransplantation 357
literature results 361–3
ovarian biopsy and freezing 358
re-implantation 360–1
restoration of ovarian function 363
revascularization 363–4
slow freezing procedure 358–9
thawing 359
ovarian transplantation 250–4
eligibility criteria 250
failure incidence 253
ovarian transplantation, tissue 357
ovarian transplantation, whole 377, 379–80, 385
cryopreserved–thawed ovary 380–2
current status and transplantation 377–8
indications 377
freezing protocols 382–3
fresh ovary 380
harvesting approaches 382
heterologous transplantation 384–5
microvascular anastomosis 383–4
microvascular thrombosis 384
morphological and functional consequences of ischemic damage 378
preventing ischemic damage 378–9
studies reporting 381
ovaries
chemotherapy 73–4
FSH expression 246
functions 450
GnRH expression 245–6
normal physiology 73
radiotherapy 75, 74–5
steroidogenesis 239
stromal blood flow 244–5
transposition of 28
ovary, artificial 308
ovulation 121–3
lead up 122
oxtetracycline 379
paracervical block 432
paracrine signaling 118, 415
follicle-to-stroma 411
stroma-to-follicle 411–12
parental factors as risks for pediatric cancers
lifestyle factors 92
alcohol consumption 94
diet and breastfeeding 92–3
recreational drugs 94–5
tobacco smoking 93–4
occupational exposures 91–2
partially crystallized glass (PCG) 150
passive humoral immunotherapy 44
Pautz–Jeghers syndrome 63
pediatric cancer 73, 83
epidemiology
adolescent and young adult 86–8
childhood 83–6
survival 88–90
fertility following treatment 78–9
emergency 79
fertility preservation 77
females, preventative 77–8
females, treatment 78
males, preventative 78
males, treatment 78
gonadotoxic chemotherapeutic agents 74
guidelines for patients and patients 79
ovaries
chemotherapy 73–4
normal physiology 73
radiotherapy 75, 74–5
risk factors 96
adolescents and young adults 95–6
extremely low-frequency electromagnetic fields 90–1
infections 92
ionizing radiation 90
parental lifestyle factors 92–5
parental occupational exposures 91–2
risk of infertility 76–7
role of physician 79
tests
chemotherapy 75–6
normal physiology 75
radiotherapy 76
pelvic abscess 321
pelvic infection 321
pelvic malignancies, incidence 250
perituberous myoid cells 17
permeating cryoprotective agents 130, 178, 284, 347
rate of penetration 348
pesticides and cancer 91
phagocytosis 109
phosphatase and tensin homolog (PTEN) 115
phosphatidylinositol-3-kinase (PI3K) pathway 115, 203
phosphatidylerosin translocation (PST) 189
phosphodiesterase 3A (PDE3A) 120
pituitary gonadotrophin 114
platelet derived growth factor (PDGF) 115
platinum compounds
azoosperma 76
pluripotent stem cells 440
epigeneic regulation 441–2
germ cell development 442–3
germ cells 443, 444–5
induced 441
germ cell differentiation 445
male germ cells 444
oocytes 443–4
potential applications and future prospects 445
stem cells 440
embryonic (ESC) 440
tests and ovary 440
Poisson ratio 153
Polscope® 286
poly (ADP-ribose) (PAR) 105
poly (ADP-ribose) polymerase (PARP) 40
polycyclic aromatic hydrocarbon–DNA adducts 104
polycystic ovary syndrome (PCOS) 240, 421, 422, 425
polyglycolic acid (PGA) 453
polyactic acid (PLA) 453
polyactic-co-glycolic acid (PLGA) microspheres 449
population mixing 92
predicting ovarian futures 459–60
control of ovarian development 461
autosomal genes 462
role of X chromosome 461–2
current state of prediction 460
future prospects 464
genes associated with follicle formation 461
genes associated with ovarian senescence 463
genetic risk factors 460–1
issues 462
menopause and fertility 464
predictability of fertility 463
predictability of menopause 463–4
prednisone 76
pregnancy breast cancer 63–4
biopsy 63
chemotherapy 64
diagnosis 63
incidence 63
treatment 63
pre-implantation genetic diagnosis (PGD) 7, 482
pre-implantation genetic screening (PGS) 23
premature ovarian failure (POF) 357, 358, 377
cyclophosphamide 14
non-cancer patients 24
ovarian tissue transplantation (OTT) 377
procarbazine 14
radiotherapy 14
SLE 27
pre-pubertal girls 401
preserving natural reproductive process 500
“pre-vivor” 488
primordial germ cells (PGCs) 199, 443
procarbazine 76
azoosperma 75
premature ovarian failure (POF) 14
procreative mandate 497
progesterone 121, 123
polycystic ovary syndrome (PCOS) 422
replacement for oocyte recipients 323
progesterone receptors (PRs) 50
promyelocytic leukemia gene (PML) 39
1,2-propanediol 139, 147, 284
propidium iodide 189
propylene glycol (PG) 131, 136, 139
prostaglandins (PGEs) 122
protein kinase A (PKA) 119
protein kinase C epsilon (PKCe) 119
proto-oncogenes 35
psycho-education 319
psychological issues 467, 473
cross-border reproductive care 473
emotional distress associated with cancer 471–2
men 472
sexuality 472
patients undergoing fertility preservation 467–8
adolescents 468–9
children 469
lesbian, gay, bisexual and transgender (LGBT) 469
men 468
women 468
predictors of psychosocial distress 472–3
provider communication 470–1
timely information 469–70
psychological screening 318
donors of oocytes 318–19
quercetin 24
radiotherapy hypothalamic–pituitary–ovarian axis 14–17
ovaries 75, 74–5
testes 18, 76
uterus 17
recreational drugs, parental use 94–5
re-crystallization 134
relationship breakdown following cancer 435
religious and cultural attitudes to ART 234
restriction point 38
Ret receptor tyrosine kinase (RET) 202
retinoic acid (RA) 115
retinoic acid receptor-alpha gene (RARa) 39
retinoic acid response elements (RAREs) 115
retrograde ejaculation 78
return of function (ROF) 377
rheumatic disease treatments 25
non-steroidal anti-inflammatory drugs (NSAIDs) 25
sarcoma 35
senescence 41
sentinel lymph node biopsy 63
sentinel node 258
serine proteases 122
serine–threonine kinase family (AKT) 203
Sertoli cells 13, 17, 75, 165
severe combined immunodeficient (SCID) mice 308, 337
sex cord stromal tumors (SCSTs) 274
signal transduction molecules 38
sleeve anastomosis 384
spare embryos 485
spermbanking 225–6
sperm chromatin structure assay (SCSA) 102
sperm cryopreservation 78
Sperm DNA Degradation (SDD) 109
sperm donation and ART 225, 230–1
anonymous versus known donation 231–3
disclosure to children 233–5
religious and cultural influences 234
sperm preparation medium (SPM) 180
spermatogenesis 101
spermatogonia (type A dark) 209
spermatogonia (type A pale) 209
spermatogonia, transplantation of cryopreserved 199–200, 206
cryopreservation 204–5
culture of human cells 203–4
development 200–1
ethical concerns 206
isolation, purification and culture of murine cells 202–3
morphological identification 201–2
removal of malignant cells 205
spermatogonial stem cells (SCs) 199
spermatooza 101, 110
apoptosis and prosurvival factors 109–10
apoptosis in germ line 103
ability 105
DNA damage 103–5
cryopreservation 135–6, 176, 193
fertilization properties 187
DNA damage 101–2
long-term storage 192–3
male age and progeny disease 102–3
Index

spermatozoa (cont.)
mammalian sperm head size 180
smoking and progeny disease 103
spermiogenesis 105–6
chromatin remodelling 106–7
importance of apoptosis 107–9
vitrification 176–7
IVF, ICSI and insemination 189–92
optimal cooling rates 180
suitability 177–9
technique 179–89
sphingosine-1-phosphate 210
squamous cell carcinoma of cervix 364
Src family kinase 203
stem cell factor (SCF) 115
stem cells 440
embryonic (ESC) 440
germ cells 443, 444–5
male germ cells 444
oocytes 443–4
tests and ovary 440
Steptoe, Patrick 3
Bourn Hall Clinic 5
sterilization of a minor 490
stewardship of the planet 498
Stokes–Einstein equation 154
strain 153
stress 153
stomal cells 409, 416
follicle co-culture systems 414–15
organ culture and primordial follicle activation 412
role in follicle development 410–11
studies
follicle-to-stroma paracrine signaling 411
stroma-to-follicle paracrine signaling 411–12
three-dimensional follicle culture systems 412–14
sulfasalazine 25
supercooled solutions 147, 149
supercooled water 134
surface free energy 451
surrogacy 67
systemic lupus erythematosus (SLE) 14
ovarian failure rates 15
premature ovarian failure (POF) 27
T lymphocytes 43
Tregimen (taxotere) 51
T regulatory cells (Tregs) 44, 45
TAC regimen (taxotere, Adriamycin and cyclophosphamide) 51, 66
tamoxifen 50, 52, 53, 55, 244, 246
breast cancer during pregnancy 64
hormonal stimulation 67
irregular menses 66
ovarian stimulation 280
teratogenicity 64
taxanes 52, 55, 65, 66
taxotere 55
technological affirmation of life 503
telomerase 41
telomers 41
alternative lengthening 41
tensile stress, maximum 154
testes
chemotherapy 17–18, 75–6
function 17
hormonal suppression, effect of 165
immature testicular tissue cryopreservation 210
cell suspensions 210
tissue pieces 210–11
whole testis 211
normal physiology 75
radiotherapy 18, 76
undescended 102
testicular cancer
adolescents and young adults 95
testicular sperm extraction (TESE) 7
testosterone, low levels 18
5, 5′, 6, 6′-tetrachloro-1, 1′, 3′, 3′-tetraethylbenzamidazolocarbocyanin iodide 183, 189
thalassemia screening 318
theca cell organizer 411
thecal cells (TCs) 114, 115
three-dimensional follicle culture systems 412
thrombocytopenia 242
thyroid cancer
adolescents and young adults 96
time–temperature transformation (TTT) diagram 132
tissue engineering 415–16
artificial ovary 454–6
smoking, parental 93–4
DNA damage in spermatozoa 103
total body irradiation (TBI) 14
effect on oocytes 75
effect on testes 18
effect on uterus 17
transforming growth factor beta (TGFβ) 40, 42, 333
superfamily 116, 117
trastuzamab 51, 64
tuberous sclerosis complexes (TSCs) 116
tubulin 285
depolymerization of dimers 285
tumor-associated antigens (TAAs) 44
tumor-causing viruses 35
TUNEL assay 104
tumor-infiltrating lymphocytes (TILs) 43, 44
ovarian failure rates 15
premature ovarian failure (POF) 27
T lymphocytes 43
Tregimen (taxotere) 51
T regulatory cells (Tregs) 44, 45
TAC regimen (taxotere, Adriamycin and cyclophosphamide) 51, 66
tamoxifen 50, 52, 53, 55, 244, 246
breast cancer during pregnancy 64
hormonal stimulation 67
tumor-specific antigens (TASs) 44
tumor suppression genes 35–6
tumors, immunology 43–4
VAC regimen (vincristine, actinomycin and cyclophosphamide) 14
vaginal intraepithelial neoplasia 262
valproic acid 442
van Leeuwenhoek, Anton J 2
vascular endothelial growth factor (VEGF) 41, 215, 333
viability staining 351
vincristine 76
viscous strain 153
vitrification 132–3, 145–6, 158
embryos 139, 280
historical origins 146–8
oocytes
immature 137
mature 137
ovarian cryobanking 330
protocols 332
physical aspects
concentration dependence 150
glass fracture 154–3
ice avoidance 151–3
ice nucleation and growth 148–9
necessity of vitreous state 149
storage below glass transition temperature 154–5
spermatozoa 176–7
IVF, ICSI and insemination 189–92
optimal cooling rates 180
suitability 177–9
technique 179–89
vitrification solutions and toxicity 155–6
carrier solution selection 157
CPA toxicity 156–7
defining needs 157
extracellular agents 157
Index

- glass formation 156
- osmotic effect elimination 158
- special additives 157
- Vogel–Tammann–Fulcher (VTF) equation 154
- von Baer, Carl Ernst 2
- Wallace–Kelsey model of ovarian follicle decline 11
- Warnock Report 7
- wettability 451
- wine, protection against cancer 94
- xenografting 352
- xenotransplantation 201, 213, 214, 338, 337–8
- fresh human testicular tissue 216
- frozen human testicular tissue 216
- xeroderma pigmentosum 40
- Young's modulus 153
- zinc finger and BTB domain containing 16 (ZBTB16) 202
- zona pellucida 287
- hardening 287
- zygote intrafallopian transfer (ZIFT) 1