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1 Source coding and hypothesis
testing; information measures

A (discrete) source is a sequence {Xi }∞i=1 of random variables (RVs) taking values
in a finite set X called the source alphabet. If the Xi ’s are independent and have the
same distribution P , we speak of a discrete memoryless source (DMS) with generic
distribution P .

A k-to-n binary block code is a pair of mappings

f : Xk → {0, 1}n, ϕ : {0, 1}n → Xk .

For a given source, the probability of error of the code ( f, ϕ) is

e( f, ϕ) � Pr{ϕ( f (Xk)) �= Xk},
where Xk stands for the k-length initial string of the sequence {Xi }∞i=1. We are interested
in finding codes with small ratio n/k and small probability of error. ➞ 1.1

More exactly, for every k let n(k, ε) be the smallest n for which there exists a k-to-n
binary block code satisfying e( f, ϕ) � ε; we want to determine limk→∞ n(k,ε)

k . ➞ 1.2

THEOREM 1.1 For a DMS with generic distribution P = {P(x) : x ∈ X}

lim
k→∞

n(k, ε)

k
= H(P) for every ε ∈ (0, 1), (1.1)

where H(P) � − ∑
x ∈ X

P(x) log P(x). ©

COROL LARY 1.1

0 � H(P) � log |X|. (1.2)
©

Proof The existence of a k-to-n binary block code with e( f, ϕ) � ε is equivalent to
the existence of a set A ⊂ Xk with Pk(A) � 1 − ε, |A| � 2n (let A be the set of those
sequences x ∈ Xk which are reproduced correctly, i.e., ϕ( f (x)) = x). Denote by s(k, ε)
the minimum cardinality of sets A ⊂ Xk with Pk(A) � 1 − ε. It suffices to show that

lim
k→∞

1

k
log s(k, ε) = H(P) (ε ∈ (0, 1)). (1.3)

To this end, let B(k, δ) be the set of those sequences x ∈ Xk which have probability

exp{−k(H(P)+ δ)} � Pk(x) � exp{−k(H(P)− δ)}.
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4 Information measures in simple coding problems

We first show that Pk(B(k, δ)) → 1 as k → ∞, for every δ > 0. In fact, consider the
real-valued RVs

Yi � − log P(Xi );
these are well defined with probability 1 even if P(x) = 0 for some x ∈ X. The Yi ’s are
independent, identically distributed and have expectation H(P). Thus by the weak law
of large numbers

lim
k→∞ Pr

{∣∣∣∣∣1k
k∑

i=1

Yi − H(P)

∣∣∣∣∣ � δ

}
= 1 for every δ > 0.

As Xk ∈ B(k, δ) iff | 1
k

∑k
i=1 Yi − H(P)| � δ, the convergence relation means that

lim
k→∞ Pk(B(k, δ)) = 1 for every δ > 0, (1.4)

as claimed. The definition of B(k, δ) implies that

|B(k, δ)| � exp{k(H(P))+ δ)}.
Thus (1.4) gives for every δ > 0

lim
k→∞

1

k
log s(k, ε) � lim

k→∞
1

k
log |B(k, δ)| � H(P)+ δ. (1.5)

On the other hand, for every set A ⊂ Xk with Pk(A) � 1 − ε, (1.4) implies

Pk(A ∩ B(k, δ)) � 1 − ε

2

for sufficiently large k. Hence, by the definition of B(k, δ),

|A| � |A ∩ B(k, δ)| �
∑

x∈A ∩ B(k,δ)

Pk(x) exp{k(H(P)− δ)}

� 1 − ε

2
exp{k(H(P)− δ)},

proving that for every δ > 0

lim
k→∞

1

k
log s(k, ε) � H(P)− δ.

This and (1.5) establish (1.3). The corollary is immediate. �

For intuitive reasons expounded in the Introduction, the limit H(P) in Theorem 1.1 is
interpreted as a measure of the information content of (or the uncertainty about) a RV X
with distribution PX = P . It is called the entropy of the RV X or of the distribution P:

H(X) = H(P) � −
∑
x∈X

P(x) log P(x).

This definition is often referred to as Shannon’s formula.
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Source coding and hypothesis testing 5

The mathematical essence of Theorem 1.1 is formula (1.3). It gives the asymptotics
for the minimum size of sets of large probability in Xk . We now generalize (1.3) for the
case when the elements of Xk have unequal weights and the size of subsets is measured
by total weight rather than cardinality.

Let us be given a sequence of positive-valued “mass functions” M1(x), M2(x), . . .
on X and set

M(x) �
k∏

i=1

Mi (xi ) for x = x1 · · · xk ∈ Xk .

For an arbitrary sequence of X-valued RVs {Xi }∞i=1 consider the minimum of the
M-mass

M(A) �
∑
x ∈ A

M(x)

of those sets A ⊂ Xk which contain Xk with high probability: let s(k, ε) denote the
minimum of M(A) for sets A ⊂ Xk of probability

PXk (A) � 1 − ε.

The previous s(k, ε) is a special case obtained if all the functions Mi (x) are identically
equal to 1.

THEOREM 1.2 If the Xi ’s are independent with distributions Pi � PXi and
| log Mi (x)| � c for every i and x ∈ X then, setting

Ek � 1

k

k∑
i=1

∑
x ∈ X

Pi (x) log
Mi (x)

Pi (x)
,

we have for every 0 < ε < 1

lim
k→∞

(
1

k
log s(k, ε)− Ek

)
= 0.

More precisely, for every δ, ε ∈ (0, 1),∣∣∣∣1k log s(k, ε)− Ek

∣∣∣∣ � δ if k � k0 = k0(|X|, c, ε, δ). (1.6)

©
Proof Consider the real-valued RVs

Yi � log
Mi (Xi )

Pi (Xi )
.

Since the Yi ’s are independent and E

(
1
k

k∑
i=1

Yi

)
= Ek , Chebyshev’s inequality gives

for any δ′ > 0

Pr

{∣∣∣∣∣1k
k∑

i=1

Yi − Ek

∣∣∣∣∣ � δ′
}

� 1

k2δ′2
k∑

i=1

var (Yi ) � 1

kδ′2
max

i
var (Yi ).
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6 Information measures in simple coding problems

This means that for the set

B(k, δ′) �
{

x : x ∈ Xk, Ek − δ′ � 1

k
log

M(x)
PXk (x)

� Ek + δ′
}

we have

PXk (B(k, δ′)) � 1 − ηk, where ηk � 1

kδ′2
max

i
var (Yi ).

Since by the definition of B(k, δ′)

M(B(k, δ′)) =
∑

x∈B(k,δ′)
M(x) �

∑
x∈B(k,δ′)

PXk (x) exp[k(Ek + δ′)] � exp[k(Ek + δ′)],

it follows that

1

k
log s(k, ε) � 1

k
log M(B(k, δ′)) � Ek + δ′ if ηk � ε.

On the other hand, we have PXk (A ∩ B(k, δ′)) � 1 − ε − ηk for any set A ⊂ Xk with
PXk (A) � 1 − ε. Thus for every such A, again by the definition of B(k, δ′),

M(A) � M(A ∩ B(k, δ′)) �
∑

x∈A∩B(k,δ′)
PXk (x) exp{k(Ek − δ′)}

� (1 − ε − ηk) exp[(Ek − δ′)],
implying

1

k
log s(k, ε) � 1

k
log(1 − ε − ηk)+ Ek + δ′.

Setting δ′ � δ/2, these results imply (1.6) provided that

ηk = 4

kδ2
max

i
var (Yi ) � ε and

1

k
log(1 − ε − ηk) � − δ

2
.

By the assumption | log Mi (x)| � c, the last relations hold if k � k0(|X|, c, ε, δ). �

An important corollary of Theorem 1.2 relates to testing statistical hypotheses. Sup-
pose that a probability distribution of interest for the statistician is given by either
P = {P(x) : x ∈ X} or Q = {Q(x) : x ∈ X}. She or he has to decide between P and
Q on the basis of a sample of size k, i.e., the result of k independent drawings from
the unknown distribution. A (non-randomized) test is characterized by a set A ⊂ Xk , in➞ 1.3
the sense that if the sample X1 . . . Xk belongs to A, the statistician accepts P and else
accepts Q. In most practical situations of this kind, the role of the two hypotheses is not
symmetric. It is customary to prescribe a bound ε for the tolerated probability of wrong
decision if P is the true distribution. Then the task is to minimize the probability of a
wrong decision if hypothesis Q is true. The latter minimum is➞ 1.4

β(k, ε) � min
A⊂Xk

Pk (A)�1−ε

Qk(A).
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Source coding and hypothesis testing 7

COROL LARY 1.2 For any 0 < ε < 1,

lim
k→∞

1

k
logβ(k, ε) = −

∑
x∈X

P(x) log
P(x)

Q(x)
. ©

Proof If Q(x) > 0 for each x ∈ X, set Pi � P , Mi � Q in Theorem 1.2. If P(x) >
Q(x) = 0 for some x ∈ X, the P-probability of the set of all k-length sequences con-
taining this x tends to 1. This means that β(k, ε) = 0 for sufficiently large k, so that
both sides of the asserted equality are −∞. �

It follows from Corollary 1.2 that the sum on the right-hand side is non-negative.
It measures how much the distribution Q differs from P in the sense of statistical
distinguishability, and is called informational divergence or I-divergence:

D(P||Q) �
∑
x∈X

P(x) log
P(x)

Q(x)
.

Another common name given to this quantity is relative entropy. Intuitively, one can
say that the larger D(P||Q) is, the more information for discriminating between the
hypotheses P and Q can be obtained from one observation. Hence D(P||Q) is also
called the information for discrimination. The amount of information measured by
D(P||Q) is, however, conceptually different from entropy, since it has no immediate
coding interpretation.

On the space of infinite sequences of elements of X one can build up product measures
both from P and Q. If P �= Q, the two product measures are mutually orthogonal;
D(P||Q) is a (non-symmetric) measure of how fast their restrictions to k-length strings
approach orthogonality.

REMARK Both entropy and informational divergence have a form of expectation:

H(X) = E(− log P(X)), D(P||Q) = E log
P(X)

Q(X)
,

where X is a RV with distribution P . It is convenient to interpret − log P(x), resp.
log P(x)/Q(x), as a measure of the amount of information, resp. the weight of evidence
in favor of P against Q provided by a particular value x of X . These quantities are
important ingredients of the mathematical framework of information theory, but have
less direct operational meaning than their expectations. ©

The entropy of a pair of RVs (X, Y ) with finite ranges X and Y needs no new def-
inition, since the pair can be considered a single RV with range X × Y. For brevity,
instead of H((X, Y )) we shall write H(X,Y ); similar notation will be used for any
finite collection of RVs.

The intuitive interpretation of entropy suggests to consider as further information
measures certain expressions built up from entropies. The difference H(X, Y )− H(X)
measures the additional amount of information provided by Y if X is already known.
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8 Information measures in simple coding problems

It is called the conditional entropy of Y given X :

H(Y |X) � H(X,Y )− H(X).

Expressing the entropy difference by Shannon’s formula we obtain

H(Y |X) = −
∑
x∈X

∑
y∈Y

PXY (x, y) log
PXY (x, y)

PX (x)
=
∑
x∈X

PX (x)H(Y |X = x), (1.7)

where

H(Y |X = x)
�= −

∑
y∈Y

PY |X (y|x) log PY |X (y|x).

Thus H(Y |X) is the expectation of the entropy of the conditional distribution of Y
given X = x . This gives further support to the above intuitive interpretation of condi-
tional entropy. Intuition also suggests that the conditional entropy cannot exceed the
unconditional one.➞ 1.5

LE M M A 1.3

H(Y |X) � H(Y ). ©

Proof

H(Y )− H(Y |X) = H(Y )− H(X, Y )+ H(X)

=
∑
x∈X

∑
y∈Y

PXY (x, y) log
PXY (x, y)

PX (x)PY (y)
= D(PXY ‖PX × PY ) � 0. �

REMARK For certain values of x , H(Y |X = x) may be larger than H(Y ). ©

The entropy difference in the preceding proof measures the decrease of uncertainty
about Y caused by the knowledge of X . In other words, it is a measure of the amount
of information about Y contained in X . Note the remarkable fact that this difference is
symmetric in X and Y . It is called mutual information:

I (X ∧ Y )
�= H(Y )− H(Y |X) = H(X)− H(X |Y ) = D(PXY ‖PX × PY ). (1.8)

Of course, the amount of information contained in X about itself is just the entropy:

I (X ∧ X) = H(X).

Mutual information is a measure of stochastic dependence of the RVs X and Y . The
fact that I (X ∧ Y ) equals the informational divergence of the joint distribution of X
and Y from what it would be if X and Y were independent reinforces this interpretation.
There is no compelling reason other than tradition to denote mutual information by a
different symbol than entropy. We keep this tradition, although our notation I (X ∧ Y )
differs slightly from the more common I (X; Y ).
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Source coding and hypothesis testing 9

Discussion

Theorem 1.1 says that the minimum number of binary digits needed – on average – to
represent one symbol of a DMS with generic distribution P equals the entropy H(P).
This fact – and similar ones discussed later on – are our basis for interpreting H(X)
as a measure of the amount of information contained in the RV X , resp. of the uncer-
tainty about this RV. In other words, in this book we adopt an operational or pragmatic
approach to the concept of information. Alternatively, one could start from the intu-
itive concept of information and set up certain postulates which an information measure
should fulfil. Some representative results of this axiomatic approach are treated in
Problems 1.11–1.14.

Our starting point, Theorem 1.1, has been proved here in the conceptually simplest
way. The key idea is that, for large k, all sequences in a subset of Xk with probability
close to 1, namely B(k, δ), have “nearly equal” probabilities in an exponential sense.
This proof easily extends also to non-DM cases (not in the scope of this book).

On the other hand, in order to treat DM models at depth, another – purely combina-
torial – approach will be more suitable. The preliminaries to this approach will be given
in Chapter 2.

Theorem 1.2 demonstrates the intrinsic relationship of the basic source coding and
hypothesis testing problems. The interplay of information theory and mathematical
statistics goes much further; its more substantial examples are beyond the scope of this
book. ©

Problems

1.1. (a) Check that the problem of determining limk→∞ 1
k n(k, ε) for a discrete

source is just the formal statement of the LMTR problem (see the Intro-
duction) for the given source and the binary noiseless channel, with the
probability of error fidelity criterion.

(b) Show that for a DMS and a noiseless channel with arbitrary alphabet size m
the LMTR is H(P)/ log m, where P is the generic distribution of the source.

1.2. Given an encoder f : Xk → {0, 1}n , show that the probability of error e( f, ϕ)
is minimized iff the decoder ϕ : {0, 1}n → Xk has the property that ϕ(y) is a
sequence of maximum probability among those x ∈ Xk for which f (x) = y.

1.3. A randomized test introduces a chance element into the decision between the
hypotheses P and Q in the sense that if the result of k successive drawings
is x ∈ Xk , one accepts the hypothesis P with probability π(x), say. Define
the analog of β(k, ε) for randomized tests and show that it still satisfies
Corollary 1.2.

1.4. (Neyman–Pearson lemma) Show that for any given bound 0 < ε < 1 on the
probability of wrong decision if P is true, the best randomized test is given by

π(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if Pk(x) > ck Qk(x)

γk if Pk(x) = ck Qk(x)

0 if Pk(x) < ck Qk(x),
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10 Information measures in simple coding problems

where ck and γk are appropriate constants. Observe that the case k = 1 contains
the general one, and there is no need to restrict attention to independent
drawings.

1.5. (a) Let {Xi }∞i=1 be a sequence of independent RVs with common range X but
with arbitrary distributions. As in Theorem 1.1, denote by n(k, ε) the small-
est n for which there exists a k-to-n binary block code having probability of
error � ε for the source {Xi }∞i=1. Show that for every ε ∈ (0, 1) and δ > 0∣∣∣∣∣n(k, ε)k

− 1

k

k∑
i=1

H(Xi )

∣∣∣∣∣ � δ if k � k0(|X|, ε, δ).

Hint Use Theorem 1.2 with Mi (x) = 1.
(b) Let {(Xi , Yi )}∞i=1 be a sequence of independent replicas of a pair of RVs

(X, Y ) and suppose that Xk should be encoded and decoded in the knowl-
edge of Y k . Let ñ(k, ε) be the smallest n for which there exists an encoder
f : Xk × Yk → {0, 1}n and a decoder ϕ : {0, 1}n × Yk → Xk such that the
probability of error is Pr{ϕ( f (Xk,Y k),Y k) �= Xk} � ε.

Show that

lim
k→∞

ñ(k, ε)

k
= H(X |Y ) for every ε ∈ (0, 1).

Hint Use part (a) for the conditional distributions of the Xi ’s given various
realizations y of Y k .

1.6. (Random selection of codes) Let F(k, n) be the class of all mappings f : Xk →
{0, 1}n . Given a source {Xi }∞i=1, consider the class of codes ( f, ϕ f ), where f
ranges over F(k, n) and ϕ f : {0, 1}n → Xk is defined so as to minimize e( f, ϕ);
see Problem 1.2. Show that for a DMS with generic distribution P we have

1

|F(k, n)|
∑

f ∈F(k,n)

e( f, ϕ f ) → 0,

if k and n tend to infinity, so that

inf
n

k
> H(P).

Hint Consider a random mapping F of Xk into {0, 1}n , assigning to each x ∈ Xk

one of the 2n binary sequences of length n with equal probabilities 2−n , indepen-
dently of each other and of the source RVs. Let Φ : {0, 1}n → Xk be the random
mapping taking the value ϕ f if F = f . Then

1

|F(k, n)|
∑

f ∈F(k,n)

e( f, ϕ f ) = Pr{Φ(F(Xk)) �= Xk}

=
∑
x∈Xk

Pk(x)Pr{Φ(F(x)) �= x}.
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