Figures and Tables are indicated in boldface

Numbers
- 3-D imaging, see stereo imaging
- agar-string fracturing, 39–42, 40
- angiogenesis, 23–24, 63
- artifacts
 - in chromosomes, 161
 - in sample preparation, 5–6, 34, 35, 73, 213, 223, 224
 - with in vivo cryo-fixation, 196–197, 197
- attachment virus stage, 101, 101–103, 102
- backscattered electron microscopy, see also field emission SEM
 - and chromosomes, 148–152, 154–157
 - in correlative microscopy, 85
 - in dental research, 226–229
 - detectors, 34, 142, 217–220
 - in SEM, 2, 3, 3
- biology
 - future of SEM in, 1–2
 - importance of expertise in for SEM, 6–7
- bleaching, 213
- block face imaging, 10–11, see also stereo imaging
- blood vessels, see also erythrocytes
 - corrosion casting in, 17, 18–24, 24
 - in dental research, 214
 - in organs, 201–208
- BSE, see backscattered electron microscopy
- budding virus stage, 101, 107–112, 107, 109, 111, 121–126
- capillary sprouts, see angiogenesis
- castigating media, see also corrosion casting; sample preparation history of, 16–18
 - problems with, 16–19
- properties of, 19
- resin, 213–214, 214, 219, 239–240
- cathodoluminescence, 3, 214
- cell cycle
 - chromosome replication, 138, 143, 159
 - Herpes Simplex virus, 117
 - in mitochondria, 59–60
 - viral infection, 101, 101–107, 102, 104, 105
- cerebellar nerves
 - mossy and climbing fibers, 180–184, 181, 182, 183, 189–191
 - Purkinje cells, 183–188, 185, 186, 187, 188, 191
 - scanning electron microscopy in, 171–180, 189
 - stellate neurons, 187, 187
- chromomeres, 143–146
- chromosomes
 - dynamic matrix model in, 158–160, 159
 - focused ion beam milling in, 139, 154–158, 160, 161–167
 - history of visualization, 138–139
 - influence of fixation additives, 145–148, 147, 148
 - isolated SEM data collection, 143–146, 144, 145, 160
 - resolution, 160–161
 - SEM techniques, 139–143
 - in situ SEM data collection, 143, 144
 - staining and labeling, 148–154, 160
 - stereo imaging, 155–158, 158, 160–161
 - structure, 138, 157–158
- cleaved glass fracturing, 36–37, 36
- CLSM, see confocal laser scanning microscopy
 - coating, see also labeling; marker; sample preparation in corrosion casting, 20–21, 239
 - in dental research, 212
 - in sample preparation, 4, 6
- colloidal gold, see labeling
 - color anaglyph images, 47–48, 48, see also stereo imaging
 - conductive bridges, 20–21
 - confocal laser scanning microscopy, 180, 191
- conjugate
 - marker process, 94–96
- synthesis, 96
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
</table>
| conventional SEM | in cerebral tissue, 179, 180, 181, 186–191 in dental research, 215–216, 216, 217 epitopes, 84–87 introduction to, 2, 3 on viruses, 101–103, 110 correlative microscopy, 84–96 corrosion casting, see also casting media applications, 26–28 history, 16–18 image interpretation, 21–24, 22 procedure, 18–21 quantitative analysis, 23–24 vascular studies, 25–27 CPD, see critical point drying critical point drying, 4, 5–6, 20, 73, 142, 212, see also sample preparation cross fractures, 182, 213, 214, 227–229 cross sections, 213, 214 cryo-fixation, see also fixation; freezing methods; in vivo cryotechnique in chromosomes, 139 drop/cryo technique, 141, 159 Herpes Simplex virus, 117–119 introduction to, 4 new technologies in, 10, 76 in toxoplasma, 7 dehydration in dental research, 212–213 high resolution low voltage SEM, 34 in vivo cryotechnique, 197, 201 dendrites, 52, 57, 58, 181, 181, 182, 182, 183, 190 dental research, see also paleoanthropology research composite restorations in, 211–212, 212 conventional SEM, 214–216, 217 environmental SEM, 229–231, 231 fractography in, 227–231, 228 high resolution field emission SEM, 217–220, 218, 219 importance of SEM in, 211, 231 sample preparation, 212–214, 213, 214 x-ray analysis, 220–227, 221, 222, 224, 226, 227 detergent treatment, 34–36, 46 diet-caused teeth wear, 245–251 drop/cryo technique, 141, 147, 158 dynamic matrix model, 158–160 ECM, see extracellular matrix EDS, see x-rays EDX, 86, 89 EELS, see energy filtering imaging electron spectroscopic imaging, 84–87, 87 enamel, see teeth endoplasmic reticulum, 52, 53, 57, 58, 59 energy dispersive spectroscopy, see x-rays energy filtering imaging, 85–86, 90 entry virus stage, 101, 103–104, 104 environmental SEM in dental research, 229–231 in paleoanthropological research, 239 epitopes of chromosomes, 152–154 as markers, 84–87, 85, 88 erythrocytes, see also blood vessels in aorta and vena cava, 204–206, 205 in liver, 205, 206 ESEM, see environmental SEM extracellular matrix, see also networks fixation, 167–169 mucus, 167, 171, 173, 173–174 role of, 165–166 sample preparation, 169–170 zona pellucida, 166–167, 170, 171, 172–175 FESEM, see field emission SEM FIB, see focused ion beam milling field emission SEM, see also backscattered electron microscopy in cell mitosis, 10 in cerebral tissue, 179–180, 183–184, 191 in chromosomes, 142, 161 in correlative microscopy, 87–89, 89 Herpes Simplex virus, 118 fixation, see also cryo-fixation; sample preparation agar-string fracturing, 39–41, 40 in chromosomes, 145–147, 147, 148, 160 cleaved glass fracturing, 36–37, 36 de-embedding semi-thin sections, 41–44, 43 in dental research, 212–213 extracellular matrix, 167–169 high resolution low voltage SEM, 34–44, 35 tape-ripping, 37, 38 wet-ripping, 37–39, 39 flourescent second antibody, 88–89 focused ion beam milling of chromosomes, 140, 154–157, 160 new technology in, 1 new technology of, 10, 11 of viral structures, 112–113, 113 fractography, 227–229 fracturing agar-string, 39–41, 40 cleaved glass, 36–37, 36 freeze fracture, see freezing methods freezing methods, 7–9, 44–46, 119, 173, see also cryo-fixation; in vivo cryotechnique GAGs, see glycosaminoglycans glycosaminoglycans, 165–166 Golgi apparatus, 52, 53, 57, 58, 59, 116, 126 granule cells, 64, 65 glycoprotein matrices, see extracellular matrix
High resolution low voltage SEM

index

Herpes Simplex virus
and advances in HR-FE-SEM, 103–108, 117, 119, 127
budding, 121–126
cryo-fixation, 117–118, 119
electron SEM, 118–119
infection of cells with, 117
nuclear pore changes, 126–132
nuclear surface in, 119–120, 121
nuclei expansion, 120, 121
hexamethyldisilazane, 213
high resolution field emission SEM
in chromosomes, 139
in dental research, 217–220
Herpes Simplex virus, 103–108, 117, 118–119, 127
in mitochondria, 51–66, 52
sample preparation, 66–67, 170
high resolution low voltage SEM
dehydration, 34
extracellular matrix, 170–171
fixation, 34–44
freezing methods, 44–46, 47
introduction to, 9–10
of mitochondrial networks, 51–67
stereo image creation in, 46–48, 48
HMDS, see hexamethyldisilazane
HR-FE-SEM, high resolution field emission SEM
HRLVFESEM, see high resolution low voltage SEM
hyperfusion, 64–65
IA, see ion abrasion
imaging methodology, 85, 86, 86, 90
immunolabelling, see labeling
in situ SEM data collection, 142, 143, 144, 160
in vitro studies
cryotechnique, 196–208
large cells, 63–64
microwear
mitochondrial networks, 59–61
in vivo cryotechnique, see also cryo-fixation; freezing methods
application to organs, 199, 201–208, 204, 205
dehydration, 197, 201
fixation, 197, 200
how to perform, 197–199, 198
and prevention of artifacts, 196–197, 197
sample preparation, 199–200, 199
in vitro studies
Herpes Simplex virus, 117, 118, 119, 127, 133
microwear, 243–245
mitochondrial networks, 59–65
ion abrasion, 112–113, 113
IVCT, see in vivo cryotechnique
Kreimmethode, 92–93, 93
kidney blood flow, 200–203, 203
labeling, see also coating; marker
in chromosomes, 139, 141, 149
in correlative microscopy, 84–96, 86, 88, 86, 89
immuno, 37, 85, 152–154, 180, 217–218
light microscopy, 63, 66, 84–89, 90, 139, 143, 159
limitations of SEM techniques, 33, 112, 139, 160, 203, 215, 225
LM, see light microscopy
marker, see also coating; labeling
conjugation, 94–96
shapes, 93–94
synthesis, 90–93
mastication, 240–243, 240, see also teeth
microcomputed tomography, 24
microcorrosion casting, see corrosion casting
micro-CT, see microcomputed tomography
microwear
analysis, 238–242, 253, 254
from an anthropological perspective, 245, 251, 250
formation, 242–245
mitochondria
during apoptosis, 62–63
cellular structure, 52–53, 52
continuous nature of, 59–61, 65
in dendrites, 57, 58, 64–65
endoplasmic reticulum, 52, 53, 57, 58, 59
Golgi apparatus, 53, 57, 58, 59
imaging methodology, 65–66
mitochondria networks
classification, 53, 55–57, 57
diversity, 53, 62
formation in large cells in vivo, 63, 65
formation in vitro cells, 64–65
history of study, 51–52
size, 61
morphometry, 23–24
muscle cells, 23, 44, 63–64
nanocrystals, 89–90
networks, see also extracellular matrix
mitochondria, 51–66, 54, 57
vascular, 24–27
neurons
and mitochondria networks, 64
stellate, 188
ODO method, 65
OTO staining method, 6
paleoanthropology research, see also dental research
importance of SEM in, 236–237, 238–239
microwear analysis, 238–242
microwear formation process, 242–245
microwear from an anthropological perspective, 245–251, 247, 250
© in this web service Cambridge University Press
www.cambridge.org
Index

<table>
<thead>
<tr>
<th>Paleanthropology Research (Cont.)</th>
<th>Tooth Shape and Function, 237, 238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td>Synthesis, 90–93, 184, 185</td>
</tr>
<tr>
<td>Plant</td>
<td>Chromosome Imaging, 139–140, 142–144</td>
</tr>
<tr>
<td>Fixation</td>
<td>Fixation, 37, 38</td>
</tr>
<tr>
<td>Freezing Methods</td>
<td>Freezing Methods, 44–45, 45</td>
</tr>
<tr>
<td>Sample Preparation</td>
<td>Platinum Blue Staining, 47, 148–152, 151, 171 Plunge Freezing, 7 Polishing, 211, 218, 224 Protein Labeling, 90 Gurkinje Cells, 181, 183–188, 185, 186, 187, 191</td>
</tr>
<tr>
<td>Replication Virus Stage</td>
<td>Resolution, 160–161, 225–227, 225, see also Stereo Imaging</td>
</tr>
<tr>
<td>Resin Casts</td>
<td>See Also Saponin</td>
</tr>
<tr>
<td>Sample Preparation</td>
<td>See also Casting Media; Coating; Critical Point Drying; Fixation</td>
</tr>
<tr>
<td>Index</td>
<td>261</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>wavelength dispersive spectrometers, see X-rays</td>
<td>in elemental analysis, 2, 3</td>
</tr>
<tr>
<td>WDS, see X-rays</td>
<td>microanalysis, 197, 201, 206–208, 207</td>
</tr>
<tr>
<td>X-rays in dental research, 220–226, 221, 222, 223, 224, 226, 227</td>
<td>ZP, see zona pellucida</td>
</tr>
</tbody>
</table>