INTRODUCTION TO STRUCTURAL DYNAMICS AND AEROELASTICITY, SECOND EDITION

This text provides an introduction to structural dynamics and aeroelasticity, with an emphasis on conventional aircraft. The primary areas considered are structural dynamics, static aeroelasticity, and dynamic aeroelasticity. The structural dynamics material emphasizes vibration, the modal representation, and dynamic response. Aeroelastic phenomena discussed include divergence, aileron reversal, airload redistribution, unsteady aerodynamics, flutter, and elastic tailoring. More than one hundred illustrations and tables help clarify the text, and more than fifty problems enhance student learning. This text meets the need for an up-to-date treatment of structural dynamics and aeroelasticity for advanced undergraduate or beginning graduate aerospace engineering students.

Praise from the First Edition

“Wonderfully written and full of vital information by two unequalled experts on the subject, this text meets the need for an up-to-date treatment of structural dynamics and aeroelasticity for advanced undergraduate or beginning graduate aerospace engineering students.”

– Current Engineering Practice

“Hodges and Pierce have written this significant publication to fill an important gap in aeronautical engineering education. Highly recommended.”

– Choice

“...a welcome addition to the textbooks available to those with interest in aeroelasticity...As a textbook, it serves as an excellent resource for advanced undergraduate and entry-level graduate courses in aeroelasticity...Furthermore, practicing engineers interested in a background in aeroelasticity will find the text to be a friendly primer.”

– AIAA Bulletin

Dewey H. Hodges is a Professor in the School of Aerospace Engineering at the Georgia Institute of Technology. He is the author of more than 170 refereed journal papers and three books, Nonlinear Composite Beam Theory (2006), Fundamentals of Structural Stability (2005, with G. J. Simitses), and Introduction to Structural Dynamics and Aeroelasticity, First Edition (2002, with G. Alvin Pierce). His research spans the fields of aeroelasticity, dynamics, computational structural mechanics and structural dynamics, perturbation methods, computational optimal control, and numerical analysis.

The late G. Alvin Pierce was Professor Emeritus in the School of Aerospace Engineering at the Georgia Institute of Technology. He is the coauthor of Introduction to Structural Dynamics and Aeroelasticity, First Edition with Dewey H. Hodges (2002).
Cambridge Aerospace Series

Editors: Wei Shyy and Michael J. Rycroft

1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
2. P. Berlin: The Geostationary Applications Satellite
3. M. J. T. Smith: Aircraft Noise
5. W. A. Mair and D. L. Birdsall: Aircraft Performance
7. M. J. Sidi: Spacecraft Dynamics and Control
8. J. D. Anderson: A History of Aerodynamics
10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology
11. J. P. Fielding: Introduction to Aircraft Design
16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
20. C. A. Wagner, T. Hüttl, and P. Sagaut (eds.): Large-Eddy Simulation for Acoustics
25. C. Segal: The Scramjet Engine: Processes and Characteristics
26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures
27. A. K. Kundu: Aircraft Design
29. B. A. Conway (ed): Spacecraft Trajectory Optimization
30. R. J. Adrian and J. Westerweel: Particle Image Velocimetry
32. H. Babinsky and J. K. Harvey: Shock Wave–Boundary-Layer Interactions
Introduction to Structural Dynamics and Aeroelasticity

Second Edition

Dewey H. Hodges
Georgia Institute of Technology

G. Alvin Pierce
Georgia Institute of Technology
Contents

Figures xi
Tables xvii
Foreword xix

1 Introduction 1

2 Mechanics Fundamentals 6
 2.1 Particles and Rigid Bodies 7
 2.1.1 Newton’s Laws 7
 2.1.2 Euler’s Laws and Rigid Bodies 8
 2.1.3 Kinetic Energy 8
 2.1.4 Work ... 9
 2.1.5 Lagrange’s Equations 9
 2.2 Modeling the Dynamics of Strings 10
 2.2.1 Equations of Motion 10
 2.2.2 Strain Energy 13
 2.2.3 Kinetic Energy 14
 2.2.4 Virtual Work of Applied, Distributed Force 15
 2.3 Elementary Beam Theory 15
 2.3.1 Torsion 15
 2.3.2 Bending ... 18
 2.4 Composite Beams 20
 2.4.1 Constitutive Law and Strain Energy for Coupled Bending
 and Torsion 21
 2.4.2 Inertia Forces and Kinetic Energy for Coupled Bending
 and Torsion 21
 2.4.3 Equations of Motion for Coupled Bending and Torsion 22
 2.5 The Notion of Stability 23
 2.6 Systems with One Degree of Freedom 24
 2.6.1 Unforced Motion 24
 2.6.2 Harmonically Forced Motion 26
2.7 Epilogue
Problems

3 Structural Dynamics 30

3.1 Uniform String Dynamics 31
 3.1.1 Standing Wave (Modal) Solution 31
 3.1.2 Orthogonality of Mode Shapes 36
 3.1.3 Using Orthogonality 38
 3.1.4 Traveling Wave Solution 41
 3.1.5 Generalized Equations of Motion 44
 3.1.6 Generalized Force 48
 3.1.7 Example Calculations of Forced Response 50

3.2 Uniform Beam Torsional Dynamics 55
 3.2.1 Equations of Motion 56
 3.2.2 Boundary Conditions 57
 3.2.3 Example Solutions for Mode Shapes and Frequencies 62
 3.2.4 Calculation of Forced Response 69

3.3 Uniform Beam Bending Dynamics 70
 3.3.1 Equation of Motion 70
 3.3.2 General Solutions 71
 3.3.3 Boundary Conditions 72
 3.3.4 Example Solutions for Mode Shapes and Frequencies 80
 3.3.5 Calculation of Forced Response 92

3.4 Free Vibration of Beams in Coupled Bending and Torsion 92
 3.4.1 Equations of Motion 92
 3.4.2 Boundary Conditions 93

3.5 Approximate Solution Techniques 94
 3.5.1 The Ritz Method 94
 3.5.2 Galerkin’s Method 101
 3.5.3 The Finite Element Method 106

3.6 Epilogue
Problems

4 Static Aeroelasticity 127

4.1 Wind-Tunnel Models 128
 4.1.1 Wall-Mounted Model 128
 4.1.2 Sting-Mounted Model 131
 4.1.3 Strut-Mounted Model 134
 4.1.4 Wall-Mounted Model for Application to Aileron Reversal 135

4.2 Uniform Lifting Surface 139
 4.2.1 Steady-Flow Strip Theory 140
 4.2.2 Equilibrium Equation 141
 4.2.3 Torsional Divergence 142
 4.2.4 Airload Distribution 145
Contents

4.2.5 Aileron Reversal 148
4.2.6 Sweep Effects 153
4.2.7 Composite Wings and Aeroelastic Tailoring 163
4.3 Epilogue 167
Problems 168

5 Aeroelastic Flutter .. 175
5.1 Stability Characteristics from Eigenvalue Analysis 176
5.2 Aeroelastic Analysis of a Typical Section 182
5.3 Classical Flutter Analysis 188
5.3.1 One-Degree-of-Freedom Flutter 189
5.3.2 Two-Degree-of-Freedom Flutter 192
5.4 Engineering Solutions for Flutter 194
5.4.1 The k Method 195
5.4.2 The $p-k$ Method 196
5.5 Unsteady Aerodynamics 201
5.5.1 Theodorsen’s Unsteady Thin-Airfoil Theory 203
5.5.2 Finite-State Unsteady Thin-Airfoil Theory of Peters et al. 206
5.6 Flutter Prediction via Assumed Modes 211
5.7 Flutter Boundary Characteristics 217
5.8 Structural Dynamics, Aeroelasticity, and Certification 221
5.8.1 Ground-Vibration Tests 221
5.8.2 Wind Tunnel Flutter Experiments 223
5.8.3 Ground Roll (Taxi) and Flight Tests 223
5.9 Epilogue 225
Problems 225

Appendix A: Lagrange’s Equations 231
A.1 Introduction 231
A.2 Degrees of Freedom 231
A.3 Generalized Coordinates 231
A.4 Lagrange’s Equations 232
A.5 Lagrange’s Equations for Conservative Systems 236
A.6 Lagrange’s Equations for Nonconservative Systems 239

References 241
Index 243
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic of the field of aeroelasticity</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic of vibrating string</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Differential element of string showing displacement components and tension force</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Beam undergoing torsional deformation</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Cross-sectional slice of beam undergoing torsional deformation</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic of beam for bending dynamics</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of differential beam segment</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Cross section of beam for coupled bending and torsion</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>Character of static-equilibrium positions</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Character of static-equilibrium positions for finite disturbances</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Single-degree-of-freedom system</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Response for system with positive k and $x(0) = x'(0) = 0.5, \zeta = 0.04$</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>Response for system with positive k and $x(0) = x'(0) = 0.5, \zeta = -0.04$</td>
<td>26</td>
</tr>
<tr>
<td>2.13</td>
<td>Response for system with negative k and $x(0) = 1, x'(0) = 0$, $\zeta = -0.05$, $\zeta = 0$, $\zeta = 0.05$ or $\zeta = -0.05, 0$, and 0.05</td>
<td>27</td>
</tr>
<tr>
<td>2.14</td>
<td>Magnification factor $</td>
<td>G(i \Omega)</td>
</tr>
<tr>
<td>2.15</td>
<td>Excitation $f(t)$ (solid line) and response $x(t)$ (dashed line) versus Ωt (in degrees) for $\zeta = 0.1$ and $\Omega/\omega = 0.9$ for a harmonically excited system</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>First three mode shapes for vibrating string</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Initial shape of plucked string</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic of moving coordinate systems x_L and x_R</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Example initial shape of wave</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Shape of traveling wave at various times</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>Concentrated force acting on string</td>
<td>49</td>
</tr>
<tr>
<td>3.7</td>
<td>Approaching the Dirac delta function</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Distributed force $f(x, t)$ acting on string</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>String with concentrated force at mid-span</td>
<td>53</td>
</tr>
<tr>
<td>3.10</td>
<td>Clamped end of a beam</td>
<td>58</td>
</tr>
</tbody>
</table>
3.11 Free end of a beam 58
3.12 Schematic of the $x = \ell$ end of the beam, showing the twisting moment T, and the equal and opposite torque acting on the rigid body 59
3.13 Schematic of the $x = 0$ end of the beam, showing the twisting moment T, and the equal and opposite torque acting on the rigid body 60
3.14 Example with rigid body and spring 61
3.15 Elastically restrained end of a beam 61
3.16 Inertially restrained end of a beam 62
3.17 Schematic of clamped-free beam undergoing torsion 63
3.18 First three mode shapes for clamped-free beam vibrating in torsion 64
3.19 Schematic of free-free beam undergoing torsion 65
3.20 First three elastic mode shapes for free-free beam vibrating in torsion 67
3.21 Schematic of torsion problem with spring 67
3.22 Plots of $\tan(\alpha \ell)$ and $-\alpha \ell / \zeta$ versus $\alpha \ell$ for $\zeta = 5$ 68
3.23 Plot of the lowest values of α_i versus ζ for a clamped-spring-restrained beam in torsion 69
3.24 First three mode shapes for clamped-spring-restrained beam in torsion, $\zeta = 1$ 70
3.25 Schematic of pinned-end condition 73
3.26 Schematic of sliding-end condition 74
3.27 Example beam undergoing bending with a spring at the $x = 0$ end 74
3.28 Schematic of beam with translational spring at both ends 75
3.29 Example of beam undergoing bending with a rotational spring at right end 75
3.30 Schematic of beam with rotational springs at both ends 76
3.31 Schematic of rigid body (a) attached to end of a beam, and (b) detached showing interactions 77
3.32 Example with rigid body attached to the right end of beam undergoing bending 78
3.33 Example with mechanism attached to the left end of beam undergoing bending 79
3.34 Free-body diagram for example with mechanism attached to the left end of beam undergoing bending 80
3.35 Schematic of pinned-pinned beam 81
3.36 Schematic of clamped-free beam 82
3.37 First three free-vibration mode shapes of a clamped-free beam in bending 84
3.38 Schematic of spring-restrained, hinged-free beam 85
3.39 Mode shapes for first three modes of a spring-restrained, hinged-free beam in bending: $\kappa = 1$, $\omega_1 = (1.24792)^2 \sqrt{EI/(m\ell^4)}$, $\omega_2 = (4.03114)^2 \sqrt{EI/(m\ell^4)}$, and $\omega_3 = (7.13413)^2 \sqrt{EI/(m\ell^4)}$ 87
3.40 Variation of lowest eigenvalues $\alpha_i \ell$ versus dimensionless spring constant κ 87
3.41 Mode shape for fundamental mode of the spring-restrained, hinged-free beam in bending; $\kappa = 50$, $\omega_1 = (1.83929)^2 \sqrt{EI/(m\ell^4)}$

3.42 Schematic of free-free beam

3.43 First three free-vibration elastic mode shapes of a free-free beam in bending

3.44 Schematic of a nonuniform beam with distributed twisting moment per unit length

3.45 Schematic of a nonuniform beam with internal torques discretized

3.46 Assumed twist distribution for all nodal values equal to zero except θ_i

3.47 Schematic of a nonuniform beam with distributed force and bending moment per unit length

3.48 First elastic mode shape for sliding-free beam (Note: the “zeroth” mode is a rigid-body translation mode)

3.49 Variation versus κ of $(\alpha_i \ell)^2$ for $i = 1, 2, \text{ and } 3,$ for a beam that is free on its right end and has a sliding boundary condition spring-restrained in translation on its left end

3.50 First mode shape for a beam that is free on its right end and has a sliding boundary condition spring-restrained in translation on its left end with $\kappa = 1$

3.51 First mode shape for a beam that is clamped on its left end and pinned with a rigid body attached on its right end with $\mu = 1$

3.52 Approximate fundamental frequency for a clamped-free beam with a particle of mass $m\ell$ attached at $x = r\ell$

4.1 Planform view of a wind-tunnel model on a torsionally elastic support

4.2 Airfoil for wind-tunnel model

4.3 Relative change in lift due to aeroelastic effect

4.4 Plot of $1/\theta$ versus $1/q$

4.5 Schematic of a sting-mounted wind-tunnel model

4.6 Detailed view of the clamped-free beam

4.7 Detailed view of the sting-mounted wing

4.8 Schematic of strut-supported wind-tunnel model

4.9 Cross section of strut-supported wind-tunnel model

4.10 Schematic of the airfoil section of a flapped two-dimensional wing in a wind tunnel

4.11 Uniform unswept clamped-free lifting surface

4.12 Cross section of spanwise uniform lifting surface

4.13 Plot of twist angle for the wing tip versus \bar{q} for $\alpha_1 + \bar{\alpha}_e = 1^\circ$

4.14 Rigid and elastic wing-lift distributions holding α_e constant

4.15 Rigid and elastic wing-lift distributions holding total lift constant

4.16 Schematic of a rolling aircraft

4.17 Section of right wing with positive aileron deflection

4.18 Roll-rate sensitivity versus $\lambda \ell$ for $\epsilon = 0.25c$, $c_{l_s} = 0.8$, and $c_{m_{\phi}} = -0.5$, showing the reversal point at $\lambda \ell = 0.984774$
4.19 Contributions to rolling moment R (normalized) from the three terms of Eq. (4.86) 153
4.20 Schematic of swept wing (positive Λ) 154
4.21 Divergence dynamic pressure versus Λ 156
4.22 Lift distribution for positive, zero, and negative Λ 157
4.23 τ_D versus β_D for coupled bending-torsion divergence; solid lines (exact solution) and dashed line (Eq. 4.104) 159
4.24 τ_D versus r for coupled bending-torsion divergence; solid lines (exact solution) and dashed lines (Eq. 4.107 and $\tau_D = -27r^2/4$ in fourth quadrant) 160
4.25 τ_D versus r for coupled bending-torsion divergence; solid lines (exact solution) and dashed lines (Eq. 4.107) 160
4.26 Normalized divergence dynamic pressure for an elastically uncoupled, swept wing with $GJ/EI = 1.0$ and $e/\ell = 0.02$ 162
4.27 Normalized divergence dynamic pressure for an elastically uncoupled, swept wing with $GJ/EI = 0.2$ and $e/\ell = 0.02$ 163
4.28 Normalized divergence dynamic pressure for an elastically coupled, swept wing with $GJ/EI = 0.5$, $k = -0.4$ (dots and dashes), $e/\ell = 0.04$ 167
4.29 Sweep angle for which divergence dynamic pressure is infinite for a wing with $GJ/EI = 0.5$; solid line is for $e/\ell = 0.01$; dashed line is for $e/\ell = 0.04$ 168
4.30 Sweep angle for which divergence dynamic pressure is infinite for a wing with $e/\ell = 0.02$; solid line is for $GJ/EI = 1.0$; dashed line is for $GJ/EI = 0.25$ 168
5.1 Behavior of typical mode amplitude when $\Omega_k \neq 0$ 181
5.2 Schematic showing geometry of the wing section with pitch and plunge spring restraints 182
5.3 Plot of the modal frequency versus V for $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$ (steady-flow theory) 186
5.4 Plot of the modal damping versus V for $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$ (steady-flow theory) 186
5.5 Schematic of the airfoil of a two-dimensional wing that is spring-restrained in pitch 190
5.6 Comparison between p and k methods of flutter analysis for a twin-jet transport airplane (from Hassig [1971] Fig. 1, used by permission) 199
5.7 Comparison between p and p-k methods of flutter analysis for a twin-jet transport airplane (from Hassig [1971] Fig. 2, used by permission) 200
5.8 Comparison between p-k and k methods of flutter analysis for a horizontal stabilizer with elevator (from Hassig [1971] Fig. 3, used by permission) 201
5.9 Plot of the real and imaginary parts of $C(k)$ for k varying from zero, where $C(k) = 1$, to unity 204
Figures

5.10 Plot of the real and imaginary parts of $C(k)$ versus $1/k$ 204
5.11 Schematic showing geometry of the zero-lift line, relative wind, and lift directions 207
5.12 Plot of the modal frequency versus $U/(b\omega)$ for $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$; solid lines: p method, aerodynamics of Peters et al.; dashed lines: steady-flow aerodynamics 211
5.13 Plot of the modal damping versus $U/(b\omega)$ for $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$; solid lines: p method, aerodynamics of Peters et al.; dashed lines: steady-flow aerodynamics 211
5.14 Plot of dimensionless flutter speed versus mass ratio for the case $\sigma = 1/\sqrt{10}$, $r = 1/2$, $x_\theta = 0$, and $a = -3/10$ 217
5.15 Plot of dimensionless flutter speed versus frequency ratio for the case $\mu = 3$, $r = 1/2$, and $a = -1/5$, where the solid line is for $x_\theta = 0.2$ and the dashed line is for $x_\theta = 0.1$ 218
5.16 Plot of dimensionless flutter speed versus e for the case $\mu = 10$, $\sigma = 1/\sqrt{2}$, and $r = 1/2$; the solid line is for $a = 0$ and the dashed line is for $a = 0.2$ 219
5.17 Flight envelope for typical Mach 2 fighter 220
5.18 Schematic of interaction between analysis and test in certification; from Niedermeyer (2014), Federal Aviation Administration, used with permission 222
5.19 Plot of $\omega_{1,2}/\omega_0$ versus $U/(b\omega_0)$ using the k method and Theodorsen aerodynamics with $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$ 228
5.20 Plot of g versus $U/(b\omega_0)$ using the k method and Theodorsen aerodynamics with $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$ 228
5.21 Plot of estimated value of $\Omega_{1,2}/\omega_0$ versus $U/(b\omega_0)$ using the p-k method with Theodorsen aerodynamics (dashed lines) and the p method with the aerodynamics of Peters et al. (solid lines) for $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$ 229
5.22 Plot of estimated value of $\Gamma_{1,2}/\omega_0$ versus $U/(b\omega_0)$ using the p-k method with Theodorsen aerodynamics (dashed lines) and the p method with the aerodynamics of Peters et al. (solid lines) for $a = -1/5$, $e = -1/10$, $\mu = 20$, $r^2 = 6/25$, and $\sigma = 2/5$ 229
A.1 Schematic for the mechanical system of Example 5 237
A.2 Schematic for the mechanical system of Example 6 238
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Values of $\alpha_i\ell, (2i - 1)\pi/2$, and β_i for $i = 1, \ldots, 5$ for the clamped-free beam</td>
</tr>
<tr>
<td>3.2</td>
<td>Values of $\alpha_i\ell, (2i + 1)\pi/2$, and β_i for $i = 1, \ldots, 5$ for the free-free beam</td>
</tr>
<tr>
<td>3.3</td>
<td>Approximate values of $\omega_1 \sqrt{\frac{m\ell^4}{EI}}$ for clamped-free beam with tip mass of $\mu m\ell$ using n clamped-free modes of Section 3.3.4, Eq. (3.258)</td>
</tr>
<tr>
<td>3.4</td>
<td>Approximate values of $\omega_2 \sqrt{\frac{m\ell^4}{EI}}$ for clamped-free beam with tip mass of $\mu m\ell$ using n clamped-free modes of Section 3.3.4, Eq. (3.258)</td>
</tr>
<tr>
<td>3.5</td>
<td>Approximate values of $\omega_1 \sqrt{\frac{m\ell^4}{EI}}$ for clamped-free beam with tip mass of $\mu m\ell$ using n polynomial functions</td>
</tr>
<tr>
<td>3.6</td>
<td>Approximate values of $\omega_2 \sqrt{\frac{m\ell^4}{EI}}$ for clamped-free beam with tip mass of $\mu m\ell$ using n polynomial functions</td>
</tr>
<tr>
<td>3.7</td>
<td>Approximate values of $\omega_i \sqrt{\frac{m\ell^4}{EI}}$ for $i = 1, 2,$ and 3, for a clamped-free beam using n polynomial functions</td>
</tr>
<tr>
<td>3.8</td>
<td>Approximate values of $\omega_i \sqrt{\frac{m\ell^4}{EI}}$ for $i = 1, 2,$ and 3 for a clamped-free beam using n terms of a power series with a reduced-order equation of motion</td>
</tr>
<tr>
<td>3.9</td>
<td>Finite-element results for the tip rotation caused by twist of a beam with linearly varying $GJ(x)$ such that $GJ(0) = GJ_0 = 2GJ(\ell)$, $r(x, t) = r = \text{const.},$ and constant values of GJ within each element</td>
</tr>
<tr>
<td>3.10</td>
<td>Approximate values of $\omega_1 \sqrt{\frac{m\ell^4}{EI}}$ for pinned-free beam having a root rotational spring with spring constant of $k\ell^4/I$ using one rigid-body mode (x) and $n - 1$ clamped-free modes of Section 3.3.4, Eq. (3.258)</td>
</tr>
<tr>
<td>3.11</td>
<td>Approximate values of $\omega_2 \sqrt{\frac{m\ell^4}{EI}}$ for pinned-free beam having a root rotational spring with spring constant of $k\ell^4/I$ using one rigid-body mode (x) and $n - 1$ clamped-free modes of Section 3.3.4, Eq. (3.258)</td>
</tr>
<tr>
<td>3.12</td>
<td>Approximate values of $\omega_1 \sqrt{\frac{m\ell^4}{EI}}$ for pinned-free beam having a root rotational spring with spring constant of $k\ell^4/I$ using one rigid-body mode (x) and $n - 1$ clamped-free modes of Section 3.3.4, Eq. (3.258)</td>
</tr>
</tbody>
</table>
mode \((x)\) and \(n - 1\) polynomials that satisfy clamped-free beam boundary conditions

3.13 Approximate values of \(\omega_2 \sqrt{\frac{m \ell^4}{EI}}\) for pinned-free beam having a root rotational spring with spring constant of \(K_{EI}/\ell\) using one rigid-body mode \((x)\) and \(n - 1\) polynomials that satisfy clamped-free beam boundary conditions

3.14 Approximate values of \(\omega_i \sqrt{\frac{m \ell^4}{EI_0}}\) for a tapered, clamped-free beam based on the Ritz method with \(n\) polynomials that satisfy all the boundary conditions of a clamped-free beam

3.15 Approximate values of \(\omega_i \sqrt{\frac{m \ell^4}{EI_0}}\) for a tapered, clamped-free beam based on the Ritz method with \(n\) terms of the form \((x/\ell)^{i+1}\), \(i = 1, 2, \ldots, n\)

3.16 Approximate values of \(\omega_i \sqrt{\frac{m \ell^4}{EI_0}}\) for a tapered, clamped-free beam based on the Galerkin method applied to Eq. (3.329) with \(n\) terms of the form \((x/\ell)^{i+1}\), \(i = 1, 2, \ldots, n\)

3.17 Finite element results for the natural frequencies of a beam in bending with linearly varying \(EI(x)\), such that \(EI_0(0) = 2EI(\ell)\) and values of \(EI\) are taken as linear within each element

5.1 Types of motion and stability characteristics for various values of \(\Gamma_k\) and \(\Omega_k\)

5.2 Variation of mass ratio for typical vehicle types
Foreword

From First Edition

A senior-level undergraduate course entitled “Vibration and Flutter” was taught for many years at Georgia Tech under the quarter system. This course dealt with elementary topics involving the static and/or dynamic behavior of structural elements, both without and with the influence of a flowing fluid. The course did not discuss the static behavior of structures in the absence of fluid flow because this is typically considered in courses in structural mechanics. Thus, the course essentially dealt with the fields of structural dynamics (when fluid flow is not considered) and aeroelasticity (when it is).

As the name suggests, structural dynamics is concerned with the vibration and dynamic response of structural elements. It can be regarded as a subset of aeroelasticity, the field of study concerned with interaction between the deformation of an elastic structure in an airstream and the resulting aerodynamic force. Aeroelastic phenomena can be observed on a daily basis in nature (e.g., the swaying of trees in the wind and the humming sound that Venetian blinds make in the wind). The most general aeroelastic phenomena include dynamics, but static aeroelastic phenomena are also important. The course was expanded to cover a full semester, and the course title was appropriately changed to “Introduction to Structural Dynamics and Aeroelasticity.”

Aeroelastic and structural-dynamic phenomena can result in dangerous static and dynamic deformations and instabilities and, thus, have important practical consequences in many areas of technology. Especially when one is concerned with the design of modern aircraft and space vehicles—both of which are characterized by the demand for extremely lightweight structures—the solution of many structural dynamics and aeroelasticity problems is a basic requirement for achieving an operationally reliable and structurally optimal system. Aeroelastic phenomena can also play an important role in turbomachinery, civil-engineering structures, wind-energy converters, and even in the sound generation of musical instruments.
Aeroelastic problems may be classified roughly in the categories of response and stability. Although stability problems are the principal focus of the material presented herein, it is not because response problems are any less important. Rather, because the amplitude of deformation is indeterminate in linear stability problems, one may consider an exclusively linear treatment and still manage to solve many practical problems. However, because the amplitude is important in response problems, one is far more likely to need to be concerned with nonlinear behavior when attempting to solve them. Although nonlinear equations come closer to representing reality, the analytical solution of nonlinear equations is problematic, especially in the context of undergraduate studies.

The purpose of this text is to provide an introduction to the fields of structural dynamics and aeroelasticity. The length and scope of the text are intended to be appropriate for a semester-length, senior-level, undergraduate course or a first-year graduate course in which the emphasis is on conventional aircraft. For curricula that provide a separate course in structural dynamics, an ample amount of material has been added to the aeroelasticity chapters so that a full course on aeroelasticity alone could be developed from this text.

This text was built on the foundation provided by Professor Pierce’s course notes, which had been used for the “Vibration and Flutter” course since the 1970s. After Professor Pierce’s retirement in 1995, when the responsibility for the course was transferred to Professor Hodges, the idea was conceived of turning the notes into a more substantial text. This process began with the laborious conversion of Professor Pierce’s original set of course notes to LaTeX format in the fall of 1997. The authors are grateful to Margaret Ojala, who was at that time Professor Hodges’s administrative assistant and who facilitated the conversion. Professor Hodges then began the process of expanding the material and adding problems to all chapters. Some of the most substantial additions were in the aeroelasticity chapters, partly motivated by Georgia Tech’s conversion to the semester system. Dr. Mayuresh J. Patil, while he was a Postdoctoral Fellow in the School of Aerospace Engineering, worked with Professor Hodges to add material on aeroelastic tailoring and unsteady aerodynamics mainly during the academic year 1999–2000. The authors thank Professor David A. Peters of Washington University for his comments on the section that treats unsteady aerodynamics. Finally, Professor Pierce, while enjoying his retirement and building a new house and amid a computer-hardware failure and visits from grandchildren, still managed to add material on the history of aeroelasticity and on the k and $p-k$ methods in the early summer of 2001.

Dewey H. Hodges and G. Alvin Pierce
Atlanta, Georgia
June 2002

1 Presently, Dr. Patil is Associate Professor in the Department of Aerospace and Ocean Engineering at Virginia Polytechnic and State University.
Addendum for Second Edition

Plans for the second edition were inaugurated in 2007, when Professor Pierce was still alive. All his colleagues at Georgia Tech and in the technical community at large were saddened to learn of his death in November 2008. Afterward, plans for the second edition were somewhat slow to develop.

The changes made for the second edition include additional material along with extensive reorganization. Instructors may choose to omit certain sections without breaking the continuity of the overall treatment. Foundational material in mechanics and structures was somewhat expanded to make the treatment more self-contained and collected into a single chapter. It is hoped that this new organization will facilitate students who do not need this review to easily skip it, and that students who do need it will find it convenient to have it consolidated into one relatively short chapter. A discussion of stability is incorporated, along with a review of how single-degree-of-freedom systems behave as key parameters are varied. More detail is added for obtaining numerical solutions of characteristic equations in structural dynamics. Students are introduced to finite-element structural models, making the material more commensurate with industry practice. Material on control reversal in static aeroelasticity has been added. Discussion on numerical solution of the flutter determinant via Mathematica™ replaces the method presented in the first edition for interpolating from a set of candidate reduced frequencies. The treatment of flutter analysis based on complex eigenvalues is expanded to include an unsteady-aerodynamics model that has its own state variables. Finally, the role of flight-testing and certification is discussed. It is hoped that the second edition will not only maintain the text’s uniqueness as an undergraduate-level treatment of the subject, but that it also will prove to be more useful in a first-year graduate course.

Dewey H. Hodges
Atlanta, Georgia