
1 Introduction

“Aeroelasticity” is the term used to denote the field of study concerned with the
interaction between the deformation of an elastic structure in an airstream and
the resulting aerodynamic force. The interdisciplinary nature of the field is best
illustrated by Fig. 1.1, which originated with Professor A. R. Collar in the 1940s. This
triangle depicts interactions among the three disciplines of aerodynamics, dynamics,
and elasticity. Classical aerodynamic theories provide a prediction of the forces
acting on a body of a given shape. Elasticity provides a prediction of the shape of an
elastic body under a given load. Dynamics introduces the effects of inertial forces.
With the knowledge of elementary aerodynamics, dynamics, and elasticity, students
are in a position to look at problems in which two or more of these phenomena
interact. The field of flight mechanics involves the interaction between aerodynamics
and dynamics, which most undergraduate students in an aeronautics/aeronautical
engineering curriculum have studied in a separate course by their senior year. This
text considers the three remaining areas of interaction, as follows:

� between elasticity and dynamics (i.e., structural dynamics)
� between aerodynamics and elasticity (i.e., static aeroelasticity)
� among all three (i.e., dynamic aeroelasticity)

Because of their importance to aerospace system design, these areas are also ap-
propriate for study in an undergraduate aeronautics/aeronautical engineering cur-
riculum. In aeroelasticity, one finds that the loads depend on the deformation (i.e.,
aerodynamics) and that the deformation depends on the loads (i.e., structural me-
chanics/dynamics); thus, one has a coupled problem. Consequently, prior study of all
three constituent disciplines is necessary before a study in aeroelasticity can be un-
dertaken. Moreover, a study in structural dynamics is helpful in developing concepts
that are useful in solving aeroelasticity problems, such as the modal representation.

It is of interest that aeroelastic phenomena played a major role throughout the
history of powered flight. The Wright brothers utilized controlled warping of the
wings on their Wright Flyer in 1903 to achieve lateral control. This was essential to
their success in achieving powered flight because the aircraft was laterally unstable
due to the significant anhedral of the wings. Earlier in 1903, Samuel Langley made
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2 Introduction

Figure 1.1. Schematic of the field of aeroelasticity

two attempts to achieve powered flight from the top of a houseboat on the Potomac
River. His efforts resulted in catastrophic failure of the wings caused by their being
overly flexible and overloaded. Such aeroelastic phenomena, including torsional
divergence, were major factors in the predominance of the biplane design until the
early 1930s, when “stressed-skin” metallic structural configurations were introduced
to provide adequate torsional stiffness for monoplanes.

The first recorded and documented case of flutter in an aircraft occurred in 1916.
The Handley Page O/400 bomber experienced violent tail oscillations as the result of
the lack of a torsion-rod connection between the port and starboard elevators—an
absolute design requirement of today. The incident involved a dynamic twisting of
the fuselage to as much as 45 degrees in conjunction with an antisymmetric flapping
of the elevators. Catastrophic failures due to aircraft flutter became a major design
concern during the First World War and remain so today. R. A. Frazer and W. J.
Duncan at the National Physical Laboratory in England compiled a classic document
on this subject entitled, “The Flutter of Aeroplane Wings” as R&M 1155 in August
1928. This small document (about 200 pages) became known as “The Flutter Bible.”
Their treatment for the analysis and prevention of the flutter problem laid the
groundwork for the techniques in use today.

Another major aircraft-design concern that may be classified as a static-
aeroelastic phenomenon was experienced in 1927 by the Bristol Bagshot, a twin-
engine, high-aspect-ratio English aircraft. As the speed was increased, the aileron
effectiveness decreased to zero and then became negative. This loss and reversal
of aileron control is commonly known today as “aileron reversal.” The incident

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19590-4 - Introduction to Structural Dynamics and Aeroelasticity: Second Edition
Dewey H. Hodges and G. Alvin Pierce
Excerpt
More information

http://www.cambridge.org/9780521195904
http://www.cambridge.org
http://www.cambridge.org


Introduction 3

was successfully analyzed and design criteria were developed for its prevention by
Roxbee Cox and Pugsley at the Royal Aircraft Establishment in the early 1930s.
Although aileron reversal generally does not lead to a catastrophic failure, it can be
dangerous and therefore is an essential design concern. It is of interest that during
this period of the early 1930s, it was Roxbee Cox and Pugsley who proposed the
name “aeroelasticity” to describe these phenomena, which are the subject of this
text.

In the design of aerospace vehicles, aeroelastic phenomena can result in a full
spectrum of behavior from the near benign to the catastrophic. At the near-benign
end of the spectrum, one finds passenger and pilot discomfort. One moves from
there to steady-state and transient vibrations that slowly cause an aircraft structure
to suffer fatigue damage at the microscopic level. At the catastrophic end, aeroelastic
instabilities can quickly destroy an aircraft and result in loss of human life without
warning. Aeroelastic problems that need to be addressed by aerospace system de-
signers can be mainly static in nature—meaning that inertial forces do not play a
significant role—or they can be strongly influenced by inertial forces. Although not
the case in general, the analysis of some aeroelastic phenomena can be undertaken
by means of small-deformation theories. Aeroelastic phenomena may strongly affect
the performance of an aircraft, positively or negatively. They also may determine
whether its control surfaces perform their intended functions well, poorly, or even
in the exact opposite manner of that which they are intended to do. It is clear then
that all of these studies have important practical consequences in many areas of
aerospace technology. The design of modern aircraft and space vehicles is charac-
terized by the demand for extremely lightweight structures. Therefore, the solution
of many aeroelastic problems is a basic requirement for achieving an operationally
reliable and structurally optimal system. Aeroelastic phenomena also play an im-
portant role in turbomachinery, in wind-energy converters, and even in the sound
generation of musical instruments.

The most commonly posed problems for the aeroelastician are stability prob-
lems. Although the elastic moduli of a given structural member are independent of
the speed of the aircraft, the aerodynamic forces strongly depend on it. It is there-
fore not difficult to imagine scenarios in which the aerodynamic forces “overpower”
the elastic restoring forces. When this occurs in such a way that inertial forces have
little effect, we refer to this as a static-aeroelastic instability—or “divergence.” In
contrast, when the inertial forces are important, the resulting dynamic instability is
called “flutter.” Both divergence and flutter can be catastrophic, leading to sudden
destruction of a vehicle. Thus, it is vital for aircraft designers to know how to design
lifting surfaces that are free of such problems. Most of the treatment of aeroelasticity
in this text is concerned with stability problems.

Much of the rest of the field of aeroelasticity involves a study of aircraft response
in flight. Static-aeroelastic response problems constitute a special case in which
inertial forces do not contribute and in which one may need to predict the lift
developed by an aircraft of given configuration at a specified angle of attack or
determine the maximum load factor that such an aircraft can sustain. Also, problems
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4 Introduction

of control effectiveness and aileron reversal fall in this category. When inertial forces
are important, one may need to know how the aircraft reacts in turbulence or in gusts.
Another important phenomenon is buffeting, which is characterized by transient
vibration induced by wakes behind wings, nacelles, or other aircraft components.

All of these problems are treatable within the context of a linear analysis. Math-
ematically, linear problems in aeroelastic response and stability are complementary.
That is, instabilities are predictable from examining the situations under which ho-
mogeneous equations possess nontrivial solutions. Response problems, however,
are generally based on the solution of inhomogeneous equations. When the sys-
tem becomes unstable, a solution to the inhomogeneous equations ceases to exist,
whereas the homogeneous equations and boundary conditions associated with a
stable conguration do not have a nontrivial solution.

Unlike the predictions from linear analyses, in actual aircraft, it is possible for
self-excited oscillations to develop, even at speeds less than the flutter speed. More-
over, large disturbances can “bump” a system that is predicted to be stable by linear
analyses into a state of large oscillatory motion. Both situations can lead to steady-
state periodic oscillations for the entire system, called “limit-cycle oscillations.” In
such situations, there can be fatigue problems leading to concerns about the life of
certain components of an aircraft as well as passenger comfort and pilot endurance.
To capture such behavior in an analysis, the aircraft must be treated as a nonlinear
system. Although of great practical importance, nonlinear analyses are beyond the
scope of this textbook.

The organization of the text is as follows. The fundamentals of mechanics are
reviewed in Chapter 2. Later chapters frequently refer to this chapter for the for-
mulations embodied therein, including the dynamics of particles and rigid bodies
along with analyses of strings and beams as examples of simple structural elements.
Finally, the behavior of single-degree-of-freedom systems is reviewed along with a
physically motivated discussion of stability.

To describe the dynamic behavior of conventional aircraft, the topic of struc-
tural dynamics is introduced in Chapter 3. This is the study of dynamic properties of
continuous elastic configurations, which provides a means of analytically represent-
ing a flight vehicle’s deformed shape at any instant of time. We begin with simple
systems, such as vibrating strings, and move up in complexity to beams in torsion
and finally to beams in bending. The introduction of the modal representation and
its subsequent use in solving aeroelastic problems is the main emphasis of Chapter 3.
A brief introduction to the methods of Ritz and Galerkin is also included.

Chapter 4 addresses static aeroelasticity. The chapter is concerned with static
instabilities, steady airloads, and control-effectiveness problems. Again, we begin
with simple systems, such as elastically restrained rigid wings. We move to wings
in torsion and swept wings in bending and torsion and then finish the chapter with
a treatment of swept composite wings undergoing elastically coupled bending and
torsional deformation.

Finally, Chapter 5 discusses aeroelastic flutter, which is associated with dynamic-
aeroelastic instabilities due to the mutual interaction of aerodynamic, elastic, and
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Introduction 5

inertial forces. A generic lifting-surface analysis is first presented, followed by illus-
trative treatments involving simple “typical-section models.” Engineering solution
methods for flutter are discussed, followed by a brief presentation of unsteady-
aerodynamic theories, both classical and modern. The chapter concludes with an
application of the modal representation to the flutter analysis of flexible wings, a
discussion of the flutter-boundary characteristics of conventional aircraft, and an
overview of how structural dynamics and aeroelasticity impact flight tests and cer-
tification. It is important to note that central to our study in the final two chapters
are the phenomena of divergence and flutter, which typically result in catastrophic
failure of the lifting surface and may lead to subsequent destruction of the flight
vehicle.

An appendix is included in which Lagrange’s equations are derived and illus-
trated, as well as references for structural dynamics and aeroelasticity.
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2 Mechanics Fundamentals

Although to penetrate into the intimate mysteries of nature and thence to learn the
true causes of phenomena is not allowed to us, nevertheless it can happen that a
certain fictive hypothesis may suffice for explaining many phenomena.

—Leonard Euler

As discussed in Chapter 1, both structural dynamics and aeroelasticity are built on
the foundations of dynamics and structural mechanics. Therefore, in this chapter, we
review the fundamentals of mechanics for particles, rigid bodies, and simple struc-
tures such as strings and beams. The review encompasses laws of motion, expressions
for energy and work, and background assumptions. The chapter concludes with a
brief discussion of the behavior of single-degree-of-freedom systems and the notion
of stability.

The field of structural dynamics addresses the dynamic deformation behavior
of continuous structural configurations. In general, load-deflection relationships are
nonlinear, and the deflections are not necessarily small. In this chapter, to facilitate
tractable, analytical solutions, we restrict our attention to linearly elastic systems
undergoing small deflections—conditions that typify most flight-vehicle operations.

However, some level of geometrically nonlinear theory is necessary to arrive at
a set of linear equations for strings, membranes, helicopter blades, turbine blades,
and flexible rods in rotating spacecraft. Among these problems, only strings are
discussed herein. Indeed, linear equations of motion for free vibration of strings
cannot be obtained without initial consideration and subsequent careful elimination
of nonlinearities.

The treatment goes beyond material generally presented in textbooks when
it delves into the modeling of composite beams. By virtue of the inclusion of this
section, readers obtain more than a glimpse of the physical phenomena associated
with these evermore pervasive structural elements to the point that such beams can
be treated in a simple fashion suitable for use in aeroelastic tailoring (see Chapter 4).
The treatment follows along with the spirit of Euler’s quotation: in mechanics, we
seek to make certain assumptions (i.e., fictive hypotheses) that although they do
not necessarily provide knowledge of true causes, they do afford us a mathematical
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2.1 Particles and Rigid Bodies 7

model that is useful for analysis and design. The usefulness of such models is only
as good as can be validated against experiments or models of higher fidelity. For
example, defining a beam as a slender structural element in which one dimension is
much larger than the other two, we observe that many aircraft wings do not have the
geometry of a beam. If the aspect ratio is sufficiently large, however, a beam model
may suffice to describe the overall behavioral characteristics of a wing.

2.1 Particles and Rigid Bodies

The simplest dynamical systems are particles. The particle is idealized as a “point-
mass,” meaning that it takes up no space even though it has nonzero mass. The
position vector of a particle in a Cartesian frame can be characterized in terms of
its three Cartesian coordinates—for example, x, y, and z. Particles have velocity
and acceleration but they do not have angular velocity or angular acceleration.
Introducing three unit vectors, î, ĵ, and k̂, which are regarded as fixed in a Cartesian
frame F , one may write the position vector of a particle Q relative to a point O fixed
in F as

pQ = xî + yĵ + zk̂ (2.1)

The velocity of Q in F can then be written as a time derivative of the position vector
in which one regards the unit vectors as fixed (i.e., having zero time derivatives) in
F , so that

vQ = ẋî + ẏĵ + żk̂ (2.2)

Finally, the acceleration of Q in F is given by

aQ = ẍî + ÿĵ + z̈k̂ (2.3)

2.1.1 Newton’s Laws

An inertial frame is a frame of reference in which Newton’s laws are valid. The only
way to ascertain whether a particular frame is sufficiently close to being inertial is
by comparing calculated results with experimental data. These laws may be stated
as follows:

1st Particles with zero resultant force acting on them move with constant velocity
in an inertial frame.

2nd The resultant force on a particle is equal to its mass times its acceleration in an
inertial frame. In other words, this acceleration is defined as in Eq. (2.3), with
the frame F being an inertial frame.

3rd When a particle P exerts a force on another particle Q, Q simultaneously exerts
a force on P with the same magnitude but in the opposite direction. This law is
often simplified as the sentence: “To every action, there is an equal and opposite
reaction.”
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8 Mechanics Fundamentals

2.1.2 Euler’s Laws and Rigid Bodies

Euler generalized Newton’s laws to systems of particles, including rigid bodies. A
rigid body B may be regarded kinematically as a reference frame. It is easy to show
that the position of every point in B is determined in a frame of reference F if (a)
the position of any point fixed in B, such as its mass center C, is known in the frame
of reference F ; and (b) the orientation of B is known in F .

Euler’s first law for a rigid body simply states that the resultant force acting on
a rigid body is equal to its mass times the acceleration of the body’s mass center in
an inertial frame. Euler’s second law is more involved and may be stated in several
ways. The two ways used most commonly in this text are as follows:

� The sum of torques about the mass center C of a rigid body is equal to the time
rate of change in F of the body’s angular momentum in F about C, with F being
an inertial frame.

� The sum of torques about a point O that is fixed in the body and is also inertially
fixed is equal to the time rate of change in F of the body’s angular momentum
in F about O, with F being an inertial frame. We subsequently refer to O as a
“pivot.”

Consider a rigid body undergoing two-dimensional motion such that the mass
center C moves in the x-y plane and the body has rotational motion about the z axis.
Assuming the body to be “balanced” in that the products of inertia Ixz = Iyz = 0,
Euler’s second law can be simplified to the scalar equation

TC = IC θ̈ (2.4)

where TC is the moment of all forces about the z axis passing through C, IC is the
moment of inertia about C, and θ̈ is the angular acceleration in an inertial frame of
the body about z. This equation also holds if C is replaced by O.

2.1.3 Kinetic Energy

The kinetic energy K of a particle Q in F can be written as

K = m
2

vQ · vQ (2.5)

where m is the mass of the particle and vQ is the velocity of Q in F . To use this
expression for the kinetic energy in mechanics, F must be an inertial frame.

The kinetic energy of a rigid body B in F can be written as

K = m
2

vC · vC + 1
2
ωB · IC · ωB (2.6)

where m is the mass of the body, IC is the inertia tensor of B about C, vC is the
velocity of C in F , and ωB is the angular velocity of B in F . In two-dimensional
motion of a balanced body, we may simplify this to

K = m
2

vC · vC + IC

2
θ̇2 (2.7)
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2.1 Particles and Rigid Bodies 9

where IC is the moment of inertia of B about C about z, θ̇ is the angular velocity
of B in F about z, and z is an axis perpendicular to the plane of motion. A similar
equation also holds if C is replaced by O, a pivot, such that

K = IO

2
θ̇2 (2.8)

where IO is the moment of inertia of B about an axis z passing through O. To use
these expressions for kinetic energy in mechanics, F must be an inertial frame.

2.1.4 Work

The work W done in a reference frame F by a force F acting at a point Q, which may
be either a particle or a point on a rigid body, may be written as

W =
∫ t2

t1
F · vQdt (2.9)

where vQ is the velocity of Q in F , and t1 and t2 are arbitrary fixed times. When there
are contact and distance forces acting on a rigid body, we may express the work done
by all such forces in terms of their resultant R, acting at C, and the total torque T of
all such forces about C, such that

W =
∫ t2

t1
(R · vC + T · ωB) dt (2.10)

The most common usage of these formulae in this text is the calculation of virtual
work (i.e., the work done by applied forces through a virtual displacement).

2.1.5 Lagrange’s Equations

There are several occasions to make use of Lagrange’s equations when calculating
the forced response of structural systems. Lagrange’s equations are derived in the
Appendix and can be written as

d
dt

(
∂L

∂ξ̇i

)
− ∂L

∂ξi
= �i (i = 1, 2, . . .) (2.11)

where L = K − P is called the “Lagrangean”—that is, the difference between the
total kinetic energy, K, and the total potential energy, P, of the system. The general-
ized coordinates are ξi ; the term on the right-hand side, �i , is called the “generalized
force.” The latter represents the effects of all nonconservative forces, as well as any
conservative forces that are not treated in the total potential energy.

Under many circumstances, the kinetic energy can be represented as a function
of only the coordinate rates so that

K = K(ξ̇1, ξ̇2, ξ̇3, . . .) (2.12)

The potential energy P consists of contributions from strain energy, discrete springs,
gravity, applied loads (conservative only), and so on. The potential energy is a
function of only the coordinates themselves; that is

P = P(ξ1, ξ2, ξ3, . . .) (2.13)
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10 Mechanics Fundamentals

Figure 2.1. Schematic of vibrating string

Thus, Lagrange’s equations can be written as

d
dt

(
∂K

∂ξ̇i

)
+ ∂ P

∂ξi
= �i (i = 1, 2, . . .) (2.14)

2.2 Modeling the Dynamics of Strings

Among the continuous systems to be considered in other chapters, the string is the
simplest. Typically, by this time in their undergraduate studies, most students have
had some exposure to the solution of string-vibration problems. Here, we present for
future reference a derivation of the governing equation, the potential energy, and the
kinetic energy along with the virtual work of an applied distributed transverse force.

2.2.1 Equations of Motion

A string of initial length �0 is stretched in the x direction between two walls separated
by a distance � > �0. The string tension, T(x, t), is considered high, and the transverse
displacement v(x, t) and slope β(x, t) are eventually regarded as small. At any given
instant, this system can be illustrated as in Fig. 2.1. To describe the dynamic behavior
of this system, the forces acting on a differential length dx of the string can be
illustrated by Fig. 2.2. Note that the longitudinal displacement u(x, t), transverse
displacement, slope, and tension at the right end of the differential element are

Figure 2.2. Differential element of string showing displacement components and tension force
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