Contents

Preface ix
Introduction xi

1 Hilbert space refresher 1
 1.1 Hilbert spaces 1
 1.1.1 Finite- and infinite-dimensional Hilbert spaces 1
 1.1.2 Basis expansion 7
 1.1.3 Example: $L^2(\Omega)$ 9
 1.2 Operators on Hilbert spaces 11
 1.2.1 The C^*-algebra of bounded operators 11
 1.2.2 Partially ordered vector space of selfadjoint operators 17
 1.2.3 Orthocomplemented lattice of projections 20
 1.2.4 Group of unitary operators 25
 1.2.5 Ideal of trace class operators 30
 1.3 Additional useful mathematics 34
 1.3.1 Weak operator topology 34
 1.3.2 Dirac notation and rank-1 operators 36
 1.3.3 Spectral and singular-value decompositions 38
 1.3.4 Linear functionals and dual spaces 40
 1.3.5 Tensor product 42

2 States and effects 45
 2.1 Duality of states and effects 45
 2.1.1 Basic statistical framework 45
 2.1.2 State space 50
 2.1.3 State space for a finite-dimensional system 60
 2.1.4 From states to effects 68
 2.1.5 From effects to states 72
 2.1.6 Dispersion-free states and Gleason’s theorem 76
Contents

2.2 Superposition structure of pure states 81
 - 2.2.1 Superposition of two pure states 81
 - 2.2.2 Interference 83

2.3 Symmetry 86
 - 2.3.1 Unitary and antiunitary transformations 87
 - 2.3.2 State automorphisms 92
 - 2.3.3 Pure state automorphisms and Wigner’s theorem 97

2.4 Composite systems 98
 - 2.4.1 System versus subsystems 99
 - 2.4.2 State purification 103

3 Observables 105
 - 3.1 Observables as positive operator-valued measures 105
 - 3.1.1 Definition and basic properties of observables 106
 - 3.1.2 Observables and statistical maps 111
 - 3.1.3 Discrete observables 113
 - 3.1.4 Real observables 115
 - 3.1.5 Mixtures of observables 116
 - 3.1.6 Coexistence of effects 121
 - 3.2 Sharp observables 126
 - 3.2.1 Projection-valued measures 126
 - 3.2.2 Sharp observables and selfadjoint operators 129
 - 3.2.3 Complementary observables 134
 - 3.3 Informationally complete observables 138
 - 3.3.1 Informational completeness 138
 - 3.3.2 Symmetric informationally complete observables 144
 - 3.3.3 State estimation 146
 - 3.4 Testing quantum systems 148
 - 3.4.1 Complete versus incomplete information 149
 - 3.4.2 Unambiguous discrimination of states 150
 - 3.4.3 How distinct are two states? 159
 - 3.5 Relations between observables 162
 - 3.5.1 State distinction and state determination 162
 - 3.5.2 Coarse-graining 164
 - 3.6 Example: photon-counting observables 168
 - 3.6.1 Single-mode electromagnetic field 168
 - 3.6.2 Nonideal photon-counting observables 169

4 Operations and channels 173
 - 4.1 Transforming quantum systems 173
 - 4.1.1 Operations and complete positivity 174
 - 4.1.2 Schrödinger versus Heisenberg picture 179
Contents

4.2 Physical model of quantum channels
4.2.1 Isolated versus open systems 181
4.2.2 Stinespring’s dilation theorem 185
4.2.3 Operator-sum form of channels 188
4.3 Elementary properties of quantum channels 191
4.3.1 Mixtures of channels 191
4.3.2 Concatenating channels 194
4.3.3 Disturbance and noise 198
4.3.4 Conjugate channels 201
4.4 Parametrizations of quantum channels 203
4.4.1 Matrix representation 204
4.4.2 The χ-matrix representation 205
4.4.3 Choi–Jamiolkowski isomorphism 207
4.5 Special classes of channels 210
4.5.1 Strictly contractive channels 210
4.5.2 Random unitary channels 212
4.5.3 Phase-damping channels 214
4.6 Example: qubit channels 216

5 Measurement models and instruments 222
5.1 Three levels of description of measurements 222
5.1.1 Measurement models 223
5.1.2 Instruments 226
5.1.3 Compatibility of the three descriptions 228
5.2 Disturbance caused by a measurement 230
5.2.1 Conditional output states 230
5.2.2 No information without disturbance 232
5.2.3 Disturbance in a rank-1 measurement 235
5.2.4 Example: BB84 quantum key distribution 236
5.3 Lüders instruments 241
5.3.1 Von Neumann’s measurement model 241
5.3.2 Lüders instrument for a discrete observable 243
5.3.3 Lüders’ theorem 244
5.3.4 Example: mean king’s problem 245
5.4 Repeatable measurements 247
5.4.1 Repeatability 248
5.4.2 Wigner–Araki–Yanase theorem 250
5.4.3 Approximate repeatability 252
5.5 Programmable quantum processors 254
5.5.1 Programming of observables and channels 254
6 Entanglement

6.1 Entangled bipartite systems
 6.1.1 Entangled vectors
 6.1.2 Entangled positive operators
 6.1.3 Nonlocal channels

6.2 Entanglement and LOCC
 6.2.1 LOCC ordering and separable states
 6.2.2 Maximally entangled states
 6.2.3 Majorization criterion for LOCC

6.3 Entanglement detection
 6.3.1 Entanglement witnesses
 6.3.2 Quantum nonlocal realism
 6.3.3 Positive but not completely positive maps
 6.3.4 Negative partial transpose (NPT) criterion
 6.3.5 Range criterion

6.4 Additional topics in entanglement theory
 6.4.1 Entanglement teleportation and distillation
 6.4.2 Multipartite entanglement
 6.4.3 Evolution of quantum entanglement

6.5 Example: Werner states

Symbols

References

Index