Cambridge University Press & Assessment 978-0-521-19583-6 — The Mathematical Language of Quantum Theory Teiko Heinosaari, Mário Ziman Frontmatter <u>More Information</u>

THE MATHEMATICAL LANGUAGE OF QUANTUM THEORY

For almost every student of physics, their first course on quantum theory raises puzzling questions and creates an uncertain picture of the quantum world. This book presents a clear and detailed exposition of the fundamental concepts of quantum theory: states, effects, observables, channels and instruments. It introduces several up-to-date topics, such as state discrimination, quantum tomography, measurement disturbance and entanglement distillation. A separate chapter is devoted to quantum entanglement. The theory is illustrated with numerous examples, reflecting recent developments in the field. The treatment emphasizes quantum information, though its general approach makes it a useful resource for graduate students and researchers in all subfields of quantum theory. Focusing on mathematically precise formulations, the book summarizes the relevant mathematics.

TEIKO HEINOSAARI is a researcher in the Turku Centre for Quantum Physics of the Department of Physics and Astronomy at the University of Turku, Finland. His research focuses on quantum measurements and quantum information theory.

MÁRIO ZIMAN is a researcher in the Research Center for Quantum Information at the Institute of Physics at the Slovak Academy of Sciences, Bratislava, and lectures at the Faculty of Informatics at the Masaryk University in Brno. His research interests include the foundations of quantum physics, quantum estimations and quantum information theory.

The present volume is part of an informal series of books, all of which originated as review articles published in *Acta Physica Slovaca*. The journal can be accessed for free at www.physics.sk/aps.

Vladimir Buzek, editor of the journal.

Cambridge University Press & Assessment 978-0-521-19583-6 — The Mathematical Language of Quantum Theory Teiko Heinosaari, Mário Ziman Frontmatter More Information

THE MATHEMATICAL LANGUAGE OF QUANTUM THEORY

From Uncertainty to Entanglement

TEIKO HEINOSAARI

University of Turku, Finland

MÁRIO ZIMAN

Slovak Academy of Sciences, Slovakia

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521195836

© T. Heinosaari and M. Ziman 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2012 Reprinted 2013

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-19583-6 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pref	face				
Intro	roduction				
Hilb	lbert space refresher				
1.1	Hilbert spaces				
	1.1.1	Finite- and infinite-dimensional Hilbert spaces	1		
	1.1.2	Basis expansion	7		
	1.1.3	Example: $L^2(\Omega)$	9		
1.2	Operators on Hilbert spaces		11		
	1.2.1	The C^* -algebra of bounded operators	11		
	1.2.2	Partially ordered vector space of selfadjoint operators	17		
	1.2.3	Orthocomplemented lattice of projections	20		
	1.2.4	Group of unitary operators	25		
	1.2.5	Ideal of trace class operators	30		
1.3	Additi	onal useful mathematics	34		
	1.3.1	Weak operator topology	34		
	1.3.2	Dirac notation and rank-1 operators	36		
	1.3.3	Spectral and singular-value decompositions	38		
	1.3.4	Linear functionals and dual spaces	40		
	1.3.5	Tensor product	42		
Stat	es and	effects	45		
2.1 Duality of states and effects		y of states and effects	45		
	2.1.1	Basic statistical framework	45		
	2.1.2	State space	50		
	2.1.3	State space for a finite-dimensional system	60		
	2.1.4	From states to effects	68		
	2.1.5	From effects to states	72		
	2.1.6	Dispersion-free states and Gleason's theorem	76		
	Pref. Intro Hilb 1.1 1.2 1.3 Stat 2.1	Preface Introduction Hilbert spa 1.1 Hilbert 1.1.1 1.1.2 1.1.3 1.2 Opera 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.3 Additi 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 States and 2.1 Dualit 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	Preface IntroductionHilbert space refresher1.1Hilbert spaces1.1Finite- and infinite-dimensional Hilbert spaces1.1.1Finite- and infinite-dimensional Hilbert spaces1.1.2Basis expansion1.1.3Example: $L^2(\Omega)$ 1.2Operators on Hilbert spaces1.2.1The C^* -algebra of bounded operators1.2.2Partially ordered vector space of selfadjoint operators1.2.3Orthocomplemented lattice of projections1.2.4Group of unitary operators1.2.5Ideal of trace class operators1.3Additional useful mathematics1.3.1Weak operator topology1.3.2Dirac notation and rank-1 operators1.3.3Spectral and singular-value decompositions1.3.4Linear functionals and dual spaces1.3.5Tensor productStates and effects2.1.1Basic statistical framework2.1.2State space2.1.3State space for a finite-dimensional system2.1.4From states to effects2.1.5From effects to states2.1.6Dispersion-free states and Gleason's theorem		

v

vi	Contents			
	2.2	Superposition structure	of pure states	81
		2.2.1 Superposition of	two pure states	81
		2.2.2 Interference		83
	2.3	Symmetry		86
		2.3.1 Unitary and anti	unitary transformations	87
		2.3.2 State automorph	isms	92
		2.3.3 Pure state autom	orphisms and Wigner's theorem	97
	2.4	Composite systems		98
		2.4.1 System versus s	ubsystems	99
		2.4.2 State purification	n	103
3	Observables			105
	3.1	Observables as positive	operator-valued measures	105
		3.1.1 Definition and b	asic properties of observables	106
		3.1.2 Observables and	statistical maps	111
		3.1.3 Discrete observa	ıbles	113
		3.1.4 Real observable	5	115
		3.1.5 Mixtures of obse	ervables	116
		3.1.6 Coexistence of e	effects	121
	3.2	Sharp observables		126
		3.2.1 Projection-value	d measures	126
		3.2.2 Sharp observabl	es and selfadjoint operators	129
		3.2.3 Complementary	observables	134
	3.3	Informationally comple	te observables	138
		3.3.1 Informational co	ompleteness	138
		3.3.2 Symmetric infor	mationally complete observables	144
		3.3.3 State estimation		146
	3.4	Testing quantum systen	18	148
		3.4.1 Complete versus	s incomplete information	149
		3.4.2 Unambiguous d	scrimination of states	150
		3.4.3 How distinct are	two states?	159
	3.5	Relations between obse	rvables	162
		3.5.1 State distinction	and state determination	162
		3.5.2 Coarse-graining		164
	3.6	Example: photon-count	ing observables	168
		3.6.1 Single-mode ele	ctromagnetic field	168
		3.6.2 Nonideal photor	a-counting observables	169
4	Operations and channels			173
	4.1	Transforming quantum	systems	173
		4.1.1 Operations and	complete positivity	174
		4.1.2 Schrödinger ver	sus Heisenberg picture	179

Cambridge University Press & Assessment 978-0-521-19583-6 — The Mathematical Language of Quantum Theory Teiko Heinosaari, Mário Ziman Frontmatter <u>More Information</u>

			Contents	vii
	4.2	Physic	cal model of quantum channels	181
		4.2.1	Isolated versus open systems	181
		4.2.2	Stinespring's dilation theorem	185
		4.2.3	Operator-sum form of channels	188
	4.3	Eleme	entary properties of quantum channels	191
		4.3.1	Mixtures of channels	191
		4.3.2	Concatenating channels	194
		4.3.3	Disturbance and noise	198
		4.3.4	Conjugate channels	201
	4.4	Parametrizations of quantum channels		203
		4.4.1	Matrix representation	204
		4.4.2	The χ -matrix representation	205
		4.4.3	Choi–Jamiolkowski isomorphism	207
	4.5	Specia	al classes of channels	210
		4.5.1	Strictly contractive channels	210
		4.5.2	Random unitary channels	212
		4.5.3	Phase-damping channels	214
	4.6	Exam	ple: qubit channels	216
5	Mea	surem	ent models and instruments	222
	5.1	Three	222	
		5.1.1	Measurement models	223
		5.1.2	Instruments	226
		5.1.3	Compatibility of the three descriptions	228
	5.2	Distur	bance caused by a measurement	230
		5.2.1	Conditional output states	230
		5.2.2	No information without disturbance	232
		5.2.3	Disturbance in a rank-1 measurement	235
		5.2.4	Example: BB84 quantum key distribution	236
	5.3	Lüder	s instruments	241
		5.3.1	Von Neumann's measurement model	241
		5.3.2	Lüders instrument for a discrete observable	243
		5.3.3	Lüders' theorem	244
		5.3.4	Example: mean king's problem	245
	5.4	Repea	table measurements	247
		5.4.1	Repeatability	248
		5.4.2	Wigner-Araki-Yanase theorem	250
		5.4.3	Approximate repeatability	252
	5.5	Programmable quantum processors		254
		5.5.1	Programming of observables and channels	254

Cambridge University Press & Assessment 978-0-521-19583-6 — The Mathematical Language of Quantum Theory Teiko Heinosaari, Mário Ziman Frontmatter <u>More Information</u>

viii		Contents		
		5.5.2	Universal processor for channels	255
		5.5.3	Probabilistic programming	258
5	Enta	anglem	261	
(6.1	Entang	gled bipartite systems	261
		6.1.1	Entangled vectors	262
		6.1.2	Entangled positive operators	267
		6.1.3	Nonlocal channels	270
(6.2	Entang	glement and LOCC	277
		6.2.1	LOCC ordering and separable states	277
		6.2.2	Maximally entangled states	279
		6.2.3	Majorization criterion for LOCC	285
	6.3	Entang	286	
		6.3.1	Entanglement witnesses	287
		6.3.2	Quantum nonlocal realism	292
		6.3.3	Positive but not completely positive maps	295
		6.3.4	Negative partial transpose (NPT) criterion	299
		6.3.5	Range criterion	300
(6.4	Additi	ional topics in entanglement theory	302
		6.4.1	Entanglement teleportation and distillation	302
		6.4.2	Multipartite entanglement	307
		6.4.3	Evolution of quantum entanglement	310
(6.5	Exam	ple: Werner states	313
,	Sym	mbols		317
	Refe	rences		318
	Inde	x		325

Preface

Quantum theory is not an easy subject to master. Trained in the everyday world of macroscopic objects like locomotives, elephants and watermelons, we are insensitive to the beauty of the quantum world. Many quantum phenomena are revealed only in carefully planned experiments in a sophisticated laboratory. Some features of quantum theory may seem contradictory and inconceivable in the framework set by our experience. Rescue comes from the language of mathematics. Its mighty power extends the limits of our apprehension and gives us tools to reason systematically even if our practical knowledge fails. Mastering the relevant mathematical language helps us to avoid unnecessary quantum controversies.

Quantum theory, as we understand it in this book, is a general framework. It is not so much about *what is out there*, but, rather, determines constraints on *what is possible* and *what is impossible*. This type of constraint is familiar from the theory of relativity and from thermodynamics. We will see that quantum theory is also a framework, and one of great interest, where these kinds of question can be studied.

What are the main lessons that quantum theory has taught us? The answer, of course, depends on who you ask. Two general themes in this book reflect our answer: uncertainty and entanglement.

Uncertainty. Quantum theory is a statistical theory and there seems to be no way to escape its probabilistic nature. The intrinsic randomness of quantum events is the seed of this uncertainty. There are various different ways in which it is manifested in quantum theory. We will discuss many of these aspects, including the nonunique decomposition of a mixed state into pure states, Gleason's theorem, the no-cloning theorem, the impossibility of discriminating nonorthogonal states and the unavoidable disturbance caused by the quantum measurement process.

Entanglement. The phenomenon of entanglement provides composite quantum systems with a very puzzling and counterintuitive flavour. Many of its consequences dramatically contradict our classical experience. Measurement outcomes observed by different observers can be entangled in a curious way, allowing for the

Cambridge University Press & Assessment 978-0-521-19583-6 — The Mathematical Language of Quantum Theory Teiko Heinosaari, Mário Ziman Frontmatter More Information

Х

Preface

violation of local realism or the teleportation of quantum states. It is fair to say that entanglement is the key resource for quantum information-processing tasks.

It should be noted that both these themes, uncertainty and entanglement, have puzzled quantum theorists since the beginning of the quantum age. Uncertainty can be traced back to Werner Heisenberg, while the word 'entanglement' was coined by Erwin Schrödinger. After many decades uncertainty and entanglement are still under active research, probably more so than ever before.

The evolution of this book had several stages, quite similar to the life cycle of a frog. Its birth dates back to a series of lectures the authors gave in 2007–8 in the Research Center for Quantum Information, Bratislava. The audience consisted of Ph.D. students working on various subfields of quantum theory. The principal aim of the lectures was to introduce a common language for the core part of quantum theory and to formulate some fundamental theorems in a mathematically precise way.

The positive response from the students encouraged us to hatch the egg, and the tadpole stage of this book was an article based on the lecture notes. The article appeared in *Acta Physica Slovaca* in August 2008. The metamorphosis from a tadpole to an adult frog took more than two years. During that stage we benefited greatly from the comments of our friends and colleagues. We hope that this grown-up frog can serve as a guide for students wishing to get an overview of the mathematical formulation of quantum theory.

Acknowledgement. This book would have never come into existence without the guidance, encouragement and help of Vladimír Bužek. Many friends and colleagues read parts of earlier versions of the manuscript and gave us valuable comments and support. Our special thanks are addressed to Paul Busch, Andreas Doering, Viktor Eisler, Sergej Nikolajevič Filippov, Stan Gudder, Jukka Kiukas, Pekka Lahti, Leon Loveridge, Daniel McNulty, Harri Mäkelä, Marco Piani, Daniel Reitzner, Tomáš Rybár, Michal Sedlák, Peter Staňo and Kari Ylinen. Teiko Heinosaari is grateful to the Alfred Kordelin Foundation for financial support.

Introduction

What is this book about? This book is an *introduction* to the basic structure of quantum theory. Our aim is to present the most essential concepts and their properties in a pedagogical and simple way but also to keep a certain level of mathematical precision. On top of that our intention is to illustrate the formalism in examples that are closely related to current research problems. As a result, the book has a quantum information flavor although it is not a quantum information textbook. The ideas related to quantum information are presented as consequences or applications of the basic quantum formalism.

Many textbooks on quantum physics concentrate either on finite- or infinitedimensional Hilbert spaces. In this book the idea has been to treat finite- and infinite-dimensional Hilbert-space formalisms on the same footing. To keep the book at a reasonable size and so as not to be drawn into mathematical technicalities, we have sometimes compromised and presented a theorem in a general form

xi

Cambridge University Press & Assessment 978-0-521-19583-6 — The Mathematical Language of Quantum Theory Teiko Heinosaari, Mário Ziman Frontmatter More Information

xii

Introduction

but have given its proof only in the finite-dimensional case. The last chapter, on the mathematical aspects of the phenomenon of entanglement, is written entirely in a finite-dimensional setting.

What this book is not about. We should perhaps warn the reader that this book is not about the different interpretations of quantum theory: we mostly avoid discussions of the philosophical consequences of the theory. These issues are important and interesting, but a proper understanding is easier to achieve if one knows the mathematical structure reasonably well first. Naturally, one cannot grasp the theory without some minimal interpretation. We have tried to keep the discussion away from controversial questions that do not (yet) have commonly agreed frameworks. Actually, even though two quantum theorists might disagree on some deeper foundational issues, they would agree on the basic predictions of quantum theory, such as measurement outcome probabilities. The reader will notice that many topics that could (and perhaps should) be included under the title The Mathematical Language of Quantum Theory are missing. For instance, the book Mathematical Concepts of Quantum Mechanics by Gustafson and Sigal has almost the same title as the present book but an almost disjoint content (actually, it can be recommended as a complement to this book). We believe that our book provides a compact and coherent overview of one branch of the mathematical language of quantum theory.

Prerequisites. We assume that the reader has already met quantum theory and has perhaps studied an elementary course on quantum mechanics. We also assume a basic knowledge of real analysis and linear algebra. We imagine that a typical reader is a Master's or Ph.D. student who wants to broaden his or her knowledge and learn a framework into which quantum concepts fit naturally. Clear definitions of basic concepts and their properties, together with a reasonably comprehensive index, should make the book useful as a reference work also.

Structure of the book. The book consists of 28 sections, grouped into six thematic chapters. Each section is divided into several subsections, which typically treat one question or topic. In the first chapter we recall the basics of Hilbert spaces. In each of the following five chapters we concentrate on one or two key concepts of quantum formalism. Within the body of the text there are short exercises where the reader is asked to verify a formula. These exercises are easy and straightforward, and hints are often given.