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Hilbert space refresher

Quantum theory, in its conventional formulation, is built on the theory of Hilbert

spaces and operators. In this chapter we go through this basic material, which is

central for the rest of the book. Our treatment is mainly intended as a refresher

and a summary of useful results. It is assumed that the reader is already familiar

with some of these concepts and elementary results, at least in the case of

finite-dimensional inner product spaces.

We present proofs for propositions and theorems only if the proof itself is con-

sidered to be instructive and illustrative. This gives us the freedom to present the

material in a topical order rather than in the strict order of mathematical impli-

cation. Good references for this chapter are the functional analysis textbooks by

Conway [45], Pedersen [113] and Reed and Simon [121]. These books also contain

the proofs that we skip here.

1.1 Hilbert spaces

As an introduction, before a formal definition is given, one may think of a Hilbert

space as the closest possible generalization of the inner product spaces C
d to infi-

nite dimensions. Actually, there are no finite-dimensional Hilbert spaces (up to

isomorphisms) other than C
d spaces. The crucial requirement of completeness

becomes relevant only in infinite-dimensional spaces. This defining property of

Hilbert spaces guarantees that they are well-behaved mathematical objects, and

many calculations can be done almost as easily as in C
d .

1.1.1 Finite- and infinite-dimensional Hilbert spaces

Let H be a complex vector space. We recall that a complex-valued function �·|·�
on H × H is an inner product if it satisfies the following three conditions for all

×, Ë, Ç * H and c * C:
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2 Hilbert space refresher

" �×|cË + Ç� = c �×|Ë� + �×|Ç� (linearity in the second argument),

" �×|Ë� = �Ë |×� (conjugate symmetry),

" �Ë |Ë� > 0 if Ë �= 0 (positive definiteness).

A complex vector space H with an inner product defined on it is an inner prod-

uct space. An alternative name for an inner product is a scalar product, and then

naturally one speaks of scalar product spaces.

The defining conditions for an inner product have some elementary conse-

quences. First notice that linearity and conjugate symmetry imply that

�c× + Ç|Ë� = c �×|Ë� + �Ç|Ë�

and that �0|Ë� = �Ë |0� = 0.

An often-used implication, which follows from the previous equation and

positive definiteness, is that

�Ë |Ë� = 0 ó Ë = 0 . (1.1)

An elementary but important result for inner product spaces is the Cauchy–Schwarz

inequality: if ×, Ë * H then

|�×|Ë�|2 f �×|×� �Ë |Ë� . (1.2)

Moreover, equality occurs if and only if × and Ë are linearly dependent, meaning

that × = cË for some complex number c. The Cauchy–Schwarz inequality will be

used constantly in our calculations.

A word of warning: unlike in quantum mechanics textbooks, in most functional

analysis textbooks inner products are linear in the first argument. This is, of course,

just a harmless difference in convention, and one can define

�×|Ë�quantum book = �Ë |×�maths book

to obtain an inner product that is linear in the second argument.

Example 1.1 (Inner product space C
d)

Let C
d denote the vector space of all d-tuples of complex numbers. For two vectors

× = (³1, . . . , ³d) and Ë = (´1, . . . , ´d), the inner product �×|Ë� is defined as

follows:

�×|Ë� =
d

�

j=1

³̄ j´ j . (1.3)

There are also other inner products on C
d (try to invent one!), but when refer-

ring to C
d we will always assume that the inner product is that defined in

(1.3). �
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1.1 Hilbert spaces 3

An isomorphism is, generally speaking, a structure-preserving bijective map-

ping. Inner product spaces have a vector space structure and the additional structure

given by the inner product. Hence, in the context of inner product spaces an

isomorphism is defined as follows.

Definition 1.2 Two inner product spaces H and H� are isomorphic if there is a

bijective linear mapping U : H ³ H� such that

�U×|UË� = �×|Ë� (1.4)

for all ×, Ë * H. The mapping U is an isomorphism.

Two isomorphic spaces are completely indistinguishable as abstract inner prod-

uct spaces. Isomorphisms are like costumes; two Hilbert spaces may be intrinsi-

cally the same but in the morning they have chosen different costumes and therefore

they look different.

An essential concept regarding inner product spaces is orthogonality. Two

vectors ×, Ë * H are called orthogonal if �×|Ë� = 0, in which case we write

×§Ë . A set of vectors X ¢ H is called orthogonal if any two distinct vectors

belonging to X are orthogonal. Among other things, the orthogonality property

can be used to define the dimension of an inner product space. First, we will draw

a distinction between finite and infinite dimensions.

Definition 1.3 Let H be an inner product space. If for any positive integer d there

exists an orthogonal set of d vectors, then H is infinite dimensional. Otherwise H

is finite dimensional.

We recall the following characterization of finite-dimensional inner product

spaces. This basic result is usually proved in linear algebra courses.

Proposition 1.4 If H is a finite-dimensional inner product space then there is a

positive integer d such that:

" there are d nonzero orthogonal vectors;

" for d � > d , any set of d � nonzero vectors contains nonorthogonal vectors.

The number d is called the dimension of H. A finite-dimensional inner product

space of dimension d is isomorphic to C
d .

Exercise 1.5 For finite-dimensional inner product spaces, the dimension can

be defined equivalently as the maximal number of nonzero linearly indepen-

dent vectors. Let X = {×1, . . . , ×n} be an orthogonal set of nonzero vectors

in a d-dimensional Hilbert space H. Show that X is a linearly independent set.
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4 Hilbert space refresher

[Hint: Start from the equation c1×1 + · · · + cn×n = 0. You need to show that

c1 = · · · = cn = 0.]

Not all inner product spaces are finite dimensional. The following example,

which we also use later, demonstrates this fact.

Example 1.6 (Inner product space �2(N))

We denote by N the set of natural numbers, including 0. Let �2(N) be a set of

functions f : N ³ C such that the sum
�>

j=0 | f ( j)|2 is finite. The formula

� f |g� =
>

�

j=0

f ( j)g( j) (1.5)

defines an inner product on �2(N). (The only nonobvious part in showing that the

formula (1.5) is an inner product is verifying that the sum
�>

j=0 f ( j)g( j) con-

verges whenever f, g * �2(N). This follows from Hölder’s inequality.) For each

k * N, let ·k be the Kronecker function, defined as

·k( j) =
�

1 if j = k ,

0 if j �= k .

It follows that

�·k |·�� = 0

whenever k �= �. The inner product space �2(N) is infinite dimensional since the

collection of Kronecker functions is an orthogonal set. �

Every inner product space H is a normed space, the norm being defined as

�Ë� c
"

�Ë |Ë� . (1.6)

The fact that the real-valued function Ë "³ �Ë� defined in (1.6) is a norm means

that the following three conditions are satisfied for all ×, Ë * H and c * C:

" �×� g 0 and �×� = 0 if and only if × = 0;

" �c×� = |c| �×�;

" �× + Ë� f �×� + �Ë� (triangle inequality).

The first two properties follow immediately from the defining conditions of inner

products. The third is easy to prove using the Cauchy–Schwarz inequality (1.2):

�× + Ë�2 = �×|×� + �×|Ë� + �Ë |×� + �Ë |Ë�
f �×|×� + 2|�×|Ë�| + �Ë |Ë�
f �×|×� + 2

"

�×|×�
"

�Ë |Ë� + �Ë |Ë�
=

"

�×� + �Ë�
"2

.

Three useful formulas are stated in the following exercises.
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1.1 Hilbert spaces 5

Exercise 1.7 (Pythagorean formula)

Let × and Ë be orthogonal vectors in an inner product space H. Prove that the

following equality, known as the Pythagorean formula, holds:

�× + Ë�2 = �×�2 + �Ë�2 . (1.7)

[Hint: Use (1.6) and expand the left-hand side of the equation.] In contrast with the

Pythagorean formula for the real inner product space R
d , (1.7) can hold even if ×

and Ë are not orthogonal. Find two vectors which demonstrate this fact. [Hint: It is

essential that H is a complex inner product space.]

Exercise 1.8 (Bessel’s inequality)

Let {Ë1, . . . , Ën} be an orthogonal set of n unit vectors (i.e.
�

�Ë j

�

� = 1) in an inner

product space H. Show that if × * H then

n
�

j=1

|
�

Ë j |×
�

|2 f �×�2 . (1.8)

[Hint: Start from the fact that

0 f
�

× 2
n

�

j=1

�

Ë j |×
�

Ë j

"

"

"

"

"

"

× 2
n

�

j=1

�

Ë j |×
�

Ë j

"

and expand the right-hand side of this inequality.]

Exercise 1.9 (Parallelogram law)

Let × and Ë be vectors in an inner product space H. Prove that the following

equality, known as the parallelogram law, holds:

�× + Ë�2 + �× 2 Ë�2 = 2 �×�2 + 2 �Ë�2 . (1.9)

[Hint: Use (1.6) and expand the left-hand side of the equation.] It is of interest to

note that the converse is also true: a normed linear space is an inner product space

if the norm satisfies the parallelogram law. (A proof of this fact can be found e.g.

in [62], Theorem 6.1.5.)

The norm induces a metric on H. The distance between two vectors Ë and × is

given by

d(Ë, ×) c �Ë 2 ×� . (1.10)

With the concept of distance defined, it makes sense to speak about metric concepts

in an inner product space H. For instance, we note that, for each vector Ë , the

mapping × "³ �Ë |×� from H to C is continuous. (This is a direct consequence of

the Cauchy–Schwarz inequality.)
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6 Hilbert space refresher

A metric space is called complete if every Cauchy sequence is convergent.

(A sequence {× j } is a Cauchy sequence if, for every ¸ > 0, there exists a

positive integer N¸ such that d(× j , ×k) < ¸ whenever j, k > N¸.) Loosely speak-

ing, completeness means that every sequence which looks convergent is indeed

convergent.

Since inner product spaces are not only metric spaces but also normed spaces,

there is an alternative characterization of completeness. Namely, a normed space is

complete if and only if every absolutely convergent series is convergent. (A series
�>

j=1 Ç j is called absolutely convergent if
�>

j=1

�

�Ç j

�

� < >.)

Every finite-dimensional inner product space is automatically complete. For

infinite-dimensional inner product spaces this is not true. Furthermore there is a

special name for inner product spaces that are complete.

Definition 1.10 A complete inner product space is called a Hilbert space.

Completeness has several useful consequences, which make Hilbert spaces

much easier to deal with than general inner product spaces. One consequence is

the existence of basis expansions (subsection 1.1.2).

An orthogonal set X ¢ H is an orthonormal set if each vector Ë * X has unit

norm. An orthonormal basis for a Hilbert space H is a maximal orthonormal set;

this means that there is no other orthonormal set containing it as a proper subset. A

useful criterion for the maximality of an orthonormal set X ¢ H is the following:

if Ë is orthogonal to all vectors in X then Ë = 0.

It can be shown that every Hilbert space has an orthonormal basis and, moreover,

that all orthonormal bases of a given Hilbert space have the same cardinality. A

Hilbert space H is called separable if it has a countable orthonormal basis.

Example 1.11 (�2(N) continued)

It can be shown that the inner product space �2(N) is complete. The set of

Kronecker functions {·0, ·1, . . .} is an orthonormal basis for �2(N). This can be

seen by using the criterion for maximality mentioned earlier. If f * �2(N) satisfies

�·k | f � = 0 then f (k) = 0. Hence, a function f which is orthogonal to all

Kronecker functions is identically zero. We conclude that �2(N) is a separable

infinite-dimensional Hilbert space. �

The following proposition should be compared with Proposition 1.4.

Proposition 1.12 Any separable infinite-dimensional Hilbert space is isomorphic

to �2(N).

The idea behind Proposition 1.12 is simple, and we will give an outline of

the proof without going into the details. Fix an orthonormal basis {×k}>k=0 for a
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1.1 Hilbert spaces 7

separable Hilbert space H. For each vector Ë * H, define a function ÞË : N ³ C

by ÞË( j) =
�

× j |Ë
�

. It then follows that ÞË * �2(N) and the correspondence Ë "³ ÞË
is an isomorphism between H and �2(N).

From now on, all Hilbert spaces are assumed to be separable.

In other words, all our Hilbert spaces are either finite dimensional or countably

infinite dimensional. Typically, we denote Hilbert spaces by the letters H or K.

Sometimes we use Hd for a finite d-dimensional Hilbert space. To avoid trivial

statements, we will also assume that the dimension d of our Hilbert space is at

least 2.

1.1.2 Basis expansion

Let H be either a finite-dimensional or separable infinite-dimensional Hilbert space

and let {×k}d
k=1 be an orthonormal basis for H. We recall that this means the

following three things:

" �×k |×k� = 1 for every k;

"
�

× j |×k

�

= 0 for every j �= k;

" if �Ë |×k� = 0 for every k then Ë = 0.

In the case of a finite-dimensional Hilbert space, it is often useful to understand

an orthonormal basis as a list of vectors rather than just as a set. In other words, we

order the elements of the orthonormal basis. There is then a unique correspondence

between the vectors and the d-tuples of complex numbers. This is actually just

another way to express the isomorphism statement at the end of Proposition 1.4.

Similarly, in the case of a separable infinite-dimensional Hilbert space we take an

orthonormal basis to mean a sequence of orthogonal vectors (rather than just a set)

whenever this is convenient.

Once an orthonormal basis is fixed, we can write every vector Ë * H in terms

of a basis expansion:

Ë =
d

�

k=1

�×k |Ë� ×k . (1.11)

The exact meaning of this formula depends on whether the Hilbert space is finite

or infinite dimensional.

In finite-dimensional Hilbert spaces the basis expansion is just a finite sum. The

basis expansion simply expresses the fact that each vector Ë can be written as a

linear combination of the basis vectors ×k .
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8 Hilbert space refresher

Exercise 1.13 Suppose that d < > and Ë =
�d

k=1 ck×k . Prove the following:

if {×k}d
k=1 is an orthonormal basis then ck = �×k |Ë�. [Hint: Start from Ë =

�d
k=1 ck×k and take the inner product with ×k on both sides.]

In the case of an infinite-dimensional Hilbert space, the basis expansion (1.11)

is a convergent series. To see this, first observe that

n
�

k=1

��×k |Ë� ×k�2 =
n

�

k=1

|�×k |Ë�|2 f �Ë�2

for any n = 1, 2, . . . , where we have applied Bessel’s inequality (1.8). This implies

that the series
>

�

k=1

��×k |Ë� ×k�2

converges (since the sequence of the partial sums is increasing and bounded). We

then recall from subsection 1.1.1 that in a Hilbert space every absolutely convergent

series is convergent. Since we have seen that the series is convergent, the basis

expansion (1.11) is easy to verify. We note that the vector Ë 2
�>

k=1 �×k |Ë� ×k is

orthogonal to every basis vector ×�. But since {×k}>k=1 is an orthonormal basis, it

follows that Ë 2
�>

k=0 �×k |Ë� ×k = 0. Therefore, (1.11) holds.

Let us remark that an infinite-dimensional Hilbert space does not contain a

countable set of vectors that would give any other vector as a linear combination

of some subset of this set. (By a linear combination we always mean a finite sum.)

We can conclude from the basis expansion that any vector can be approximated

arbitrarily well by a linear combination of basis vectors.

Example 1.14 (Basis expansion in �2(N))

We saw earlier that the Hilbert space �2(N) consists of complex functions f on

N such that the sum
�>

k=0 | f (k)|2 is finite and the Kronecker functions form an

orthonormal basis in �2(N). If a function f is nonzero only at a finite number of

points k, then clearly we can write it as

f =
�

k: f (k) �=0

f (k)·k . (1.12)

This is nothing other than the basis expansion of f in the Kronecker basis. The

formula (1.12) is true for all f * �2(N), but in general it is a convergent series and

need not be a finite sum. �

The complex numbers �×k |Ë� in (1.11) are called the Fourier coefficients of Ë

with respect to the orthonormal basis {×k}d
k=1. They give not only the basis expan-

sion of Ë but also the best approximation of Ë if one is allowed to use only some
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1.1 Hilbert spaces 9

fixed subset of the basis vectors. Namely, fix a positive integer m f d. For any

choice of m complex numbers c1, . . . , cm , we have
�

�

�

�

�

Ë 2
m

�

k=1

�×k |Ë�×k

�

�

�

�

�

f
�

�

�

�

�

Ë 2
m

�

k=1

ck×k

�

�

�

�

�

. (1.13)

To see that this inequality holds, we write the square of the right-hand side in

the form
�

�

�

�

�

Ë 2
m

�

k=1

ck×k

�

�

�

�

�

2

= �Ë�2 2
m

�

k=1

|�×k |Ë�|2 +
m

�

k=1

|ck 2 �×k |Ë�|2

and then observe that the last sum is positive unless ck = �×k |Ë� for every k =
1, . . . , m.

Another useful thing about Fourier coefficients is that one can use them to

calculate the norm of a vector. The norm of Ë in (1.11) is given by Parseval’s

formula:

�Ë�2 =
d

�

k=1

|�×k |Ë�|2 . (1.14)

This is obtained from the following chain of equalities:

�Ë�2 = �Ë |Ë� =
�

d
�

k=1

�×k |Ë�×k

"

"

"

"

"

"

d
�

j=1

�

× j |Ë
�

× j

"

=
d

�

k=1

d
�

j=1

�×k |Ë�
�

× j |Ë
� �

×k |× j

�

=
d

�

k=1

|�×k |Ë�|2.

In the infinite-dimensional case, the fact that the sums can be taken out of the inner

product is justified by the continuity of the latter.

1.1.3 Example: L2(�)

Up to now, we have encountered only one particular infinite-dimensional Hilbert

space, namely �2(N). At the abstract level, there are no other separable infinite-

dimensional Hilbert spaces as they are all isomorphic (recall Proposition 1.12).

However, in applications Hilbert spaces typically have some concrete form. The

benefit of using one particular concrete form rather than another is that certain

operators may be easier to handle or a calculation may be easier to perform.

One very useful class of concrete Hilbert spaces is that consisting of so-called

square integrable functions. Actually, �2(N) also belongs to this class but then

the integration is just a sum on N and square integrability means that the sum
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10 Hilbert space refresher

�>
j=0 | f ( j)|2 is finite. (In technical terms, the integration is with respect to the

counting measure on N.)

To introduce other examples of this type of Hilbert space, let � be the real line

R or an interval on R. We denote by L2(�) the set of complex-valued functions on

� for which the integral
�

�
| f (x)|2dx is finite. To be more precise, functions are

required to be measurable and two functions are identified if they are equal almost

everywhere. With these conventions, L2(�) is a separable infinite-dimensional

Hilbert space equipped with an inner product

� f |g� =
�

�

f (x)g(x) dx . (1.15)

There is, of course, some work to do to show that (1.15) is an inner product and

that it makes L2(�) a separable Hilbert space. These details can be found, in for

instance, the textbooks by Rudin [122] or Folland [61].

We conclude that a unit vector in L2(�) is a function f : � ³ C satisfying

� f �2 =
�

�
| f (x)|2dx = 1. It is possible (and convenient) to choose an orthonor-

mal basis for L2(�) consisting of continuous functions. For a nice example, let

� = [0, 2Ã). A function f on [0, 2Ã) can be alternatively thought of as a periodic

function on R with period 2Ã . Clearly, for each n * Z, the function en(x) := einx

belongs to L2([0, 2Ã)). Two functions en and em with n �= m are orthogonal, since

�en|em� =
� 2Ã

0

ei(m2n)x dx = 0 (1.16)

and we have �en� =
:

2Ã . One can actually prove that the set

{en/
:

2Ã : n * Z}

is an orthonormal basis in L2([0, 2Ã)). For any f * L2([0, 2Ã)), one obtains

�en| f � =
1

:
2Ã

� 2Ã

0

e2inx f (x) dx .

These numbers are (up to a constant factor) just the usual Fourier coefficients of f .

This example of square integrable functions has a natural extension from

complex-valued functions to vector-valued functions. We denote by L2(�; C
d)

the set of functions from � to C
d for which the integral

�

�
� f (x)�2 dx is finite.

The norm inside the integral is the norm in C
d . The inner product in L2(�; C

d) is

defined as

� f |g� =
�

�

� f (x)|g(x)� dx ,

where the inner product under the integral sign is the inner product of C
d . In a

similar way we can start from any Hilbert space H and define L2(�;H).
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