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Introduction

Einstein’s equation

Gab = 8πGTab (1.1)

presents a complicated system of non-linear partial differential equations of up to
second order for the space-time metric gab. As a tensorial equation, it determines the
structure of space-time in a covariant and coordinate-independent way. Nevertheless, coor-
dinates are often chosen to arrive at specific solutions, and the Einstein tensor is split into
its components in the process. In component form, one then notices that some of the
equations are of first order only; they do not appear as evolution equations but rather as
constraints on the initial values that can be posed for the second-order part of Einstein’s
equation. Moreover, some components of the metric do not appear as second-order deriva-
tives at all.

Physically, all these properties taken together capture the self-interacting nature of the
gravitational field and its intimate relationship with the structure of space-time. Einstein’s
equation is not to be solved on a given background space-time, its solutions rather determine
how space-time itself evolves starting with the structure of an initial spatial manifold.
General covariance allows one to express solutions in any coordinate system and to relate
solutions based only on different choices of coordinates in consistent ways. Consistency is
ensured by properties of the first-order part of the equation, and coordinate redundancy by
the different behaviors of metric components. All these properties are thus crucial, but they
make the theory rather difficult to analyze and to understand.

Instead of solving Einstein’s equation just as one set of coupled partial differential
equations, the use of geometry provides important additional insights by which much
information can be gained in an elegant and systematic way. There is, first, space-time
itself which is equipped with a Riemannian structure and thus encodes the gravitational
field in a geometrical way. Geometry allows many identifications of observable space-
time quantities, and it provides means to understand space-time globally and to arrive at
general theorems, for instance regarding singularities. These structures can be analyzed
with differential geometry, which is provided in most introductory textbooks on general
relativity and will be assumed at least as basic knowledge in this book. (More advanced
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2 Introduction

geometrical topics are provided in the Appendix.) We will be assuming familiarity with the
first part of the book by Wald (1984), and use similar notations.

In addition to space-time, also the solution space to Einstein’s equation, just like the
solution space of any field theory, is equipped with a special kind of geometry: symplectic
or Poisson geometry as the basis of canonical methods. General properties of solution
spaces regarding gauge freedom, as originally analyzed by Dirac, are best seen in such
a setting. In this book, the traditional treatment of systems with constraints following
Dirac’s classification will be accompanied by a mathematical discussion of geometrical
properties of the solution spaces involved. With this combination, a more penetrating view
can be developed, showing how natural several of the distinctions made by Dirac are from
a mathematical perspective. In gravity, these techniques become especially important for
understanding the solutions of Einstein’s equation and their relationships to each other
and to observables. They provide exactly the systematic tools required to understand the
evolution problem and consistency of Einstein’s equation and the meaning of the way
in which space-time structure is described, but they are certainly not confined to this
purpose. Canonical techniques are relevant for many applications, including cosmology
of homogeneous models and perturbations around them, and collapse models of matter
distributions into black holes. Regarding observational aspects of cosmology, for instance,
canonical methods provide systematic tools to derive gauge-invariant observables and their
evolution. Finally, canonical methods are important when the theory is to be quantized to
obtain quantum gravity.

We will first illustrate the appearance and application of canonical techniques in gravity
by the example of isotropic cosmology. What we learn in this context will be applied to
general relativity in Chapter 3, in which the main versions of canonical formulations — those
due to Arnowitt, Deser and Misner (ADM) (2008) and a reformulation in terms of Ashtekar
variables — are derived. At the same time, mathematical techniques of symplectic and
Poisson geometry will be developed. Applications at this general level include a discussion
of the initial-value problem as well as an exhibition of canonical methods and their results
in numerical relativity. Canonical matter systems will also be discussed in this chapter.

Just as one often solves Einstein’s equation in a symmetric context, symmetry-reduced
models provide interesting applications of the canonical equations. Classes of these models,
general issues of symmetry reduction, and perturbations around symmetric models are the
topic of Chapter 4. The main cosmological implications of general relativity will be touched
upon in the process. From the mathematical side, the general theory of connections and
fiber bundles will be developed in this chapter. Spherically symmetric models, then, do not
only provide insights about black holes, but also illustrate the symmetry structures behind
the canonical formulation of general relativity (in terms of Lie algebroids).

Chapter 5 does not introduce new canonical techniques, but rather, shows how they
are interlinked with other, differential geometric methods often used to analyze global
properties of solutions of general relativity. These include geodesic congruences, singularity
theorems, the structure of horizons, and matching techniques to construct complicated
solutions from simpler ones. The class of physical applications in this chapter will mainly
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Introduction 3

be black holes, regarding properties of their horizons as well as models for their formation
in gravitational collapse.

Chaper 6 then provides concluding discussions with a brief, non-exhaustive outlook on
the application to canonical quantum gravity. This topic would require an entire book for
a detailed discussion, and so here we only use the final chapter to provide a self-contained
link from the methods developed in the main body of this book to the advanced topic of
quantum gravity. Several books exist by now dedicated to the topic of canonical quantum
gravity, to which we refer for further studies.

This book grew out of a graduate course on “Advanced Topics in General Relativity”
held at Penn State, taking place with the prerequisite of a one-semester introduction to
general relativity that normally covers the usual topics up to the Schwarzschild space-time.
In addition to extending the understanding of Einstein’s equation, this course has the aim
to provide the basis for research careers in the diverse direction of gravitational physics,
such as numerical relativity, cosmology and quantum gravity. The material contained in
this book is much more than could be covered in a single semester, but it has been included
to provide a wider perspective and some extra background material. If the book is used for
teaching, choices of preferred topics will have to be made. The extra material is sometimes
used for independent studies projects, as happened during the preparation of this book.

I am grateful to a large number of colleagues and students for collaborations and explo-
rations over several years, in particular to Rupam Das, Xihao Deng, Golam Hossain,
Mikhail Kagan, George Paily, Juan Reyes, Aureliano Skirzewski, Thomas Strobl, Rakesh
Tibrewala and Artur Tsobanjan, with whom I have worked on issues related to the mater-
ial in this book. Finally, I thank Hans Kastrup for having instilled in me a deep respect
for Hamiltonian methods. One of the clearest memories from my days as a student is a
homework problem of a classical-mechanics class taught by Hans Kastrup. It was about
Hamilton–Jacobi methods, epigraphed with the quote “Put off thy shoes from off thy feet,
for the place whereon thou standest is holy ground.”
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2

Isotropic cosmology: a prelude

Cosmology presents the simplest dynamical models of space-time by assuming space to be
homogeneous and isotropic on large scales. This reduces the line element to Friedmann–
Lemaı̂tre–Robertson–Walker (FLRW) form:

ds2 = −N (t)2dt2 + a(t)2dσ 2
k (2.1)

with the spatial line element

dσ 2
k = dr2

1 − kr2
+ r2(dϑ2 + sin2 ϑdϕ2) (2.2)

of a 3-space of constant curvature. Only this form is compatible with the assumption of
spatial isotropy — the existence of a 6-dimensional isometry group acting transitively on
spatial slices t = const and on tangent spaces — as we will derive in detail in Chapter 4.2.1.
The only free functions are the lapse function N (t) and the scale factor a(t), while the
constant curvature parameter k can take the values zero (spatial flatness), plus one (positive
spatial curvature; 3-sphere) or minus one (negative spatial curvature; hyperbolic space).

Both the lapse function and the scale factor must be non-zero, and can be assumed
positive without loss of generality. The lapse function determines the clock-rate by which the
coordinate t measures time. It can be absorbed by using cosmological proper time1 τ defined
via dτ = N (t)dt , a differential equation for τ (t). With a positive N (t), τ (t) = ∫

N (t)dt is
a monotonic function and can thus be inverted to obtain t(τ ) to be inserted in a(t) in the
metric if we want to transform from t to τ .

The scale factor measures the expansion or contraction of space in time. For a spatially flat
model, it can be rescaled by a constant which would simply change the spatial coordinates.
(For models with non-vanishing spatial curvature, the rescaling freedom of coordinates
is conventionally fixed by normalizing k to be ±1.) However, unlike N (t) it cannot be
completely absorbed in coordinates while preserving the isotropic form of the line element.
Its relative change such as the Hubble parameter ȧ/a or relative acceleration parameters
thus do have physical meaning. They are subject to the dynamical equations of isotropic
cosmological models.

1 The notion of proper time refers to observers, in the present case to co-moving ones staying at a fixed point in space and
passively following the expansion or contraction of the universe.
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2.1 Equations of motion 5

2.1 Equations of motion

The dynamics of gravity is determined by the Einstein–Hilbert action

SEH[g] =
∫

d4x

(
1

16πG

√
− det gR + Lmatter

)
(2.3)

where gab is the space-time metric, Lmatter a Lagrangian density for matter and R =
gabRab = gabRacb

c the Ricci scalar. We will later verify that this action indeed produces
Einstein’s equation; see Example 3.7.

2.1.1 Reduced Lagrangian

For an isotropic metric (2.1) it is easy to derive the Ricci scalar:

R = 6

(
ä

N2a
+ ȧ2

N2a2
− ȧṄ

aN3
+ k

a2

)
. (2.4)

With det g = −r4 sin2(ϑ)N (t)2a(t)6/(1 − kr2) we then have the reduced gravitational
action

S iso
grav[a,N ] = 3V0

8πG

∫
dtNa3

(
ä

N2a
+ ȧ2

N2a2
− ȧṄ

aN3
+ k

a2

)
(2.5)

= − 3V0

8πG

∫
dt

(
aȧ2

N
− kaN

)
(2.6)

integrating by parts in the second step. Note that we do not need to integrate over all of
space (and in fact cannot always do so in a well-defined way if space is non-compact)
because the geometry of our isotropic space-time is the same everywhere for constant t . An
arbitrary constant V0 := ∫

drdϑdϕr2 sin ϑ/
√

1 − kr2 thus arises after picking a compact
integration region. From now on we will be assuming that V0 equals one, which can always
be achieved by picking a suitable region to integrate over. This identifies the reduced
gravitational Lagrangian as

Liso
grav = − 3

8πG

(
aȧ2

N
− kaN

)
. (2.7)

Note that it does not depend on the time derivative of the lapse function.
In this derivation, we are commuting the two steps involved in the derivation of reduced

equations of motion: we do not use the full equations of motion that are obtained from
varying the action (as done explicitly in Example 3.7) and then insert a special symmetric
form of solutions, but insert this symmetric form, (2.1), into the action and then derive
equations of motion from variations. There is no guarantee in general that this is in fact
allowed: equations of motion correspond to extrema of the action functional; if the action is
restricted before variation, some extrema might be missed. The reduced action may, in some
cases, not produce the correct equations of motion. In the case of interest here, however,
it is true that one can proceed in this way and we do so because it is simpler. We will
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6 Isotropic cosmology: a prelude

come back to this problem (called symmetric criticality) from a more general perspective
in Chapter 4.2.2.

2.1.2 Canonical analysis

In the reduced action, our free functions of time are a(t) and N (t), which lead to the
canonical variables (a, pa; N,pN ). Momenta are derived in the usual way as

pa = ∂Liso
grav

∂ȧ
= − 3

4πG

aȧ

N
, pN = ∂Liso

grav

∂Ṅ
= 0 . (2.8)

Because the Lagrangian does not depend on Ṅ , the momentum pN vanishes identically
and is not a degree of freedom. Its vanishing rather presents a primary constraint on the
canonical variables and their dynamics. Constraints of this form are associated with gauge
freedom of the action, and pN = 0 corresponds to the freedom of redefining time: as seen
from the line element, N (t) can be absorbed in the choice of the coordinate t . It thus cannot
be a physical degree of freedom, and is not granted a non-trivial momentum.

Proceeding with the canonical analysis, we derive the gravitational Hamiltonian

H iso
grav = ȧpa + ṄpN − Liso

grav = −2πG

3

Np2
a

a
− 3

8πG
kaN . (2.9)

Or, keeping a general matter contribution with Hamiltonian Hmatter and our primary con-
straint, which can be added since it vanishes, we have the total Hamiltonian

H iso
total = H iso

grav + H iso
matter + λpN (2.10)

where λ(t) is an arbitrary function. This Hamiltonian determines evolution by Hamiltonian
equations of motion

Ṅ = ∂H iso
total

∂pN

= λ (2.11)

ṗN = −∂H iso
total

∂N
= 2πG

3

p2
a

a
+ 3

8πG
ka − ∂H iso

matter

∂N
(2.12)

ȧ = ∂H iso
total

∂pa

= −4πG

3

Npa

a
(2.13)

ṗa = −∂H iso
total

∂a
= −2πG

3

Np2
a

a2
+ 3

8πG
Nk − ∂H iso

matter

∂a
. (2.14)

The first equation, (2.11), tells us again that N (t) is completely arbitary as a function of
time, for λ(t) remained free when we added the primary constraint to the Hamiltonian. The
second equation, (2.12), implies a secondary constraint because pN = 0 must be valid at
all times, and thus ṗN = 0, or

− 2πG

3

p2
a

a
− 3

8πG
ka + ∂H iso

matter

∂N
= 0 . (2.15)
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2.1 Equations of motion 7

The third equation, (2.13), reproduces the definition (2.8) of the momentum pa , whose
equation of motion (2.14) then provides a second-order evolution equation for a.2

2.1.3 Scalar field

This set of equations for the gravitational variables is accompanied by equations for matter
degrees of freedom, if present, which can be derived analogously from an explicit matter
Hamiltonian. In isotropic cosmology, the only matter source compatible with the exact
symmetries is a scalar field ϕ, which in minimally coupled form has an action

Sscalar[ϕ] = −
∫

d4x
√

− det g

(
1

2
gµν∂µϕ∂νϕ + V (ϕ)

)
. (2.16)

(More generally, there can be non-minimal coupling terms to gravity of the form 1
2ξRϕ2 with

the Ricci scalar R. Any other curvature couplings would require a parameter of dimension
length, which is not available at the classical level; only quantum corrections could provide
extra terms making use of the Planck length 
P = √

Gh̄.) For isotropic metrics and spatially
homogeneous ϕ, this reduces to the Lagrangian

Liso
scalar = a3

2N
ϕ̇2 − Na3V (ϕ) (2.17)

which we now analyze canonically.
The scalar has a momentum

pϕ = ∂Liso
scalar

∂ϕ̇
= a3ϕ̇

N
(2.18)

and the Hamiltonian is

H iso
scalar(ϕ, pϕ) = ϕ̇pϕ − Liso

scalar(ϕ, pϕ) = Np2
ϕ

2a3
+ Na3V (ϕ) . (2.19)

Hamiltonian equations of motion are ϕ̇ = ∂H iso
scalar/∂pϕ = Npϕ/a3 which reproduces (2.18)

and

ṗϕ = −∂H iso
scalar

∂ϕ
= −Na3V ′(ϕ) . (2.20)

2.1.4 Friedmann equations

In order to bring the equations in more conventional form, we use (2.13) to eliminate pa in
(2.15) and (2.14). In this way we obtain the Friedmann equation(

ȧ

aN

)2

+ k

a2
= 8πG

3

1

a3

∂H iso
matter

∂N
(2.21)

2 Had we not chosen to set V0 = 1, the Lagrangian, the momenta, and the Hamiltonian would have remained multiplied with
V0. In all equations of motion, both sides scale in the same way when V0 is changed; the dynamics is thus independent of the
choice of V0.
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8 Isotropic cosmology: a prelude

and the Raychaudhuri equation

(ȧ/N).

aN
= −4πG

3

(
1

a3

∂H iso
matter

∂N
− 1

Na2

∂H iso
matter

∂a

)
. (2.22)

For the scalar field,3

1

a3

∂H iso
scalar

∂N
= p2

ϕ

2a6
+ V (ϕ) (2.23)

and

− 1

Na2

∂H iso
scalar

∂a
= 3

(
p2

ϕ

2a6
− V (ϕ)

)
.

The first-order Hamiltonian equations of motion for ϕ and pϕ can be combined to a second-
order equation for ϕ, the Klein–Gordon equation

(ϕ̇/N).

N
− 3

ȧ

Na

ϕ̇

N
+ V ′(ϕ) = 0 . (2.24)

2.2 Matter parameters

In a matter Hamiltonian, formulated in canonical variables, any N -dependence arises only
from the measure factor

√− det g, and thus the Hamiltonian must be proportional to N .
For a homogeneous space-time, we then have

∂Hmatter

∂N
= 1

N
Hmatter = E (2.25)

as the matter Hamiltonian measured in proper time, or the energy. (Energy is frame-
dependent, in the case of isotropic cosmology amounting to a reference to N . We will
exhibit the general frame dependence in the full expressions in Chapter 3.6.) Furthermore,
we use the spatial volume V = a3 to define the energy density4

ρ := E

V
= Hmatter

Na3
(2.26)

and pressure

P := −∂E

∂V
= − 1

3Na2

∂Hmatter

∂a
. (2.27)

These quantities, unlike E, are independent under rescaling a or changing the time coordi-
nate. (In an isotropic universe, these two quantities completely determine the stress-energy
tensor

Tab = ρuaub + P (gab + uaub) (2.28)

3 All partial derivatives require the other canonical variables to be held fixed while taking them since these are the independent
variables in Hamiltonian equations of motion. Thus, ∂pϕ/∂a = 0 even though pϕ , according to (2.18), appears to depend on a.
However, ∂ϕ̇/∂a �= 0 because ϕ̇ is not a canonical variable held fixed for ∂/∂a.

4 With our choice of V0 = 1, this is the energy in our integration region divided by the volume of the region. Thanks to
homogeneity, this ratio must be the energy density everywhere.
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2.2 Matter parameters 9

in perfect-fluid form, such that ρ = Tabu
aub and P = Tabv

ava where ua = (∂/∂τ )a with
uau

a = −1 is the fluid 4-velocity and va is a unit spatial vector satisfying vaua = 0 and
vav

a = 1.)
Thus, we rewrite the Friedmann and Raychaudhuri equations (2.21) and (2.22) as(

ȧ

aN

)2

+ k

a2
= 8πG

3
ρ (2.29)

(ȧ/N).

aN
= −4πG

3
(ρ + 3P ) . (2.30)

This set of one first- and one second-order differential equation implies, as a consistency
condition, the continuity equation

ρ̇

N
+ 3

ȧ

Na
(ρ + P ) = 0 . (2.31)

One can also derive this equation from the conservation equation of a perfect-fluid stress-
energy tensor.

Notice that these equations only refer to observable quantities, which are the scaling-
independent matter parameters ρ and P as well as the Hubble parameter

H = ȧ

aN
(2.32)

and the deceleration parameter

q = −a(ȧ/N) · N

ȧ2
. (2.33)

There is no dependence on the rescaling of the scale factor in these parameters, nor is there
a dependence on the choice of time coordinate. In fact, all time derivatives appear in the
invariant proper-time form d/dτ = N−1d/dt .

Example 2.1 (de Sitter expansion)
If pressure equals the negative energy density, P = −ρ, the energy density and thus the
Hubble parameter H must be constant in time by virtue of (2.31). This behavior is realized
when matter contributions are dominated by a positive cosmological constant �. In proper
time, we then have the Friedmann equation ȧ = Ha, solved by a = a0 exp(Hτ ).

Next to proper time, a parameter often used is conformal time with N = a, making (2.1)
with k = 0 conformally equivalent to flat space-time. In this example, the transformation to
conformal time is obtained as η(τ ) = ∫

e−Hτ dτ = −(Ha(τ ))−1. Thus, the scale factor as
a function of conformal time behaves as a(η) = −(Hη)−1. While proper time can take the
whole range of real values, conformal time must be negative. (None of these coordinates
covers all of de Sitter space with a flat spatial slicing.) A finite conformal-time interval
approaching η → 0 corresponds to an infinite amount of proper time. The divergence of a(η)
for η → 0 is thus only a coordinate effect but with no physical singularity since no observer,
who must experience proper time in the rest frame, can live to experience the divergence.
For later use we note the relationships a′′/a = 2/η2 = 2ȧ2 = 2H2

conf for conformal-time
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10 Isotropic cosmology: a prelude

derivatives (denoted by primes) and the conformal Hubble parameter Hconf = a′/a = ȧ �=
H.

In order to solve the equations of isotropic cosmology, an equation of state P (ρ) must
be known, or matter degrees of freedom subject to additional equations of motion must
be specified. In the preceding example, this was the simple relationship P = −ρ. More
generally, one may assume a linear relationship P = wρ with a constant equation-of-state
parameter w.

Example 2.2 (Perfect fluid)
A perfect fluid satisfies the equation of state P = wρ with a constant w. For w = 0, the
fluid is called dust, and for w = 1/3 we have radiation (see Chapter 3.6.3). Solving the
continuity equation (2.31) implies that

ρ ∝ a−3(w+1) . (2.34)

For dust, energy density ρ ∝ a−3 is thus just being diluted as the universe expands, while
radiation with ρ ∝ a−4 has an additional red-shift factor. In proper time, N = 1, and for a
spatially flat universe, k = 0, the Friedmann equation (ȧ/a)2 ∝ a−3(w+1) shows that a(τ ) ∝
(τ − τ0)2/(3+3w) for w �= −1 and a(τ ) ∝ exp(

√
8πG�/3 τ ) for w = −1, where the matter

contribution is only from a cosmological constant � = ρ = −P . In conformal time, N = a,
the Friedmann equation reads (a′/a2)2 ∝ a−3(w+1) and gives a(η) ∝ (η − η0)2/(1+3w) for
w �= −1/3.

In the example, we can see the following properties:

1. Deceleration, q > 0, is realized for w > − 1
3 , which includes all normal forms of matter.

2. Solutions are in general singular:

(i) a can diverge at finite proper time for w < −1.
(ii) a can vanish at finite proper time for w > −1, which includes in particular dust and radiation.

In both cases, the Ricci scalar diverges and the Friedmann equation ceases to provide a well-
posed initial-value problem. (For the limiting value of w = −1, we have the maximally
symmetric, and thus non-singular, de Sitter space-time of Example 2.1.)

2.3 Energy conditions

In order to distinguish classes of general matter sources, those not necessarily characterized
by a single parameter such as w, with physically and causally reasonable properties one
defines energy conditions which a stress-energy tensor should satisfy:

Weak energy condition, WEC Tabv
avb ≥ 0 must be satisfied for all timelike va (which by conti-

nuity implies that it is also satisfied for null vector fields). If this is true, the local energy density
will be non-negative for any observer.

In an isotropic space-time the stress-energy tensor Tab = ρuaub + P (gab + uaub) must
be of perfect-fluid form, for which the WEC directly implies that ρ = Tabu

aub ≥ 0, and
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