Traditionally, soil science, atmospheric science, hydrology, plant science and agriculture have been studied largely as separate subjects. These systems are clearly interlinked, however, and in recent years a great deal of interdisciplinary research has been undertaken to understand the interactions better. This textbook was developed from a course that the authors have been teaching for many years on atmosphere-vegetation-soil interactions at one of the leading international research institutes in environmental science and agriculture.

Small-scale processes at the interface of soil and vegetation and in the lower atmosphere may have a profound impact on large-scale processes in the atmosphere and subsurface water. Furthermore, the interaction among soil, vegetation and atmosphere is important for the assessment and monitoring of water resources. This book describes the atmosphere-vegetation-soil continuum from the perspective of several interrelated disciplines, integrated into one textbook. The book begins with the treatment of individual terms in the energy and water balance of Earth’s surface, including the role of plants and solutes. A number of these aspects are then combined in the treatment of practical methods to estimate evapotranspiration. This leads to the presentation of a number of integrated applications, showing how the theory of the preceding chapters leads to new insights. The book concludes by presenting integrated hydrological and meteorological models in which the theory of transport processes is applied. The book assumes readers have some familiarity with basic radiation laws, thermodynamics and soil science. However, much of this prerequisite knowledge is also covered briefly in appendices. The text is interspersed with many student exercises and problems, with solutions included.

This textbook is ideal for intermediate to advanced students in meteorology, hydrology, soil science, environmental sciences and biology who are studying the atmosphere-vegetation-soil continuum, as well as researchers and professionals interested in the observation and modelling of atmosphere-vegetation-soil interactions.

Arnold F. Moene is an assistant professor in the Meteorology and Air Quality Group of Wageningen University, the Netherlands. The overarching theme of his research is atmospheric turbulence in relation to Earth’s surface. Dr Moene teaches a number of undergraduate and graduate courses related to atmosphere-vegetation-soil interactions (theory and observations) and fluid mechanics. He plays an active role in the organization and development of education in the BSc and MSc programmes on Soil, Water and Atmosphere at Wageningen University. He is a member of the editorial board of the journal Boundary-Layer Meteorology, and has authored or co-authored more than 35 peer-reviewed international scientific publications.

Jos C. Van Dam is an associate professor in the Soil Physics and Land Management Group of Wageningen University, the Netherlands. He is responsible for research and education in the transport of water, solutes, heat and gases in topsoils at the undergraduate and graduate levels. A main focus of his work is physical transport processes and their interaction with vegetation development and micro-meteorology. Dr van Dam is one of the main developers of the widely used ecohydrological model SWAP (Soil Water Atmosphere Plant). He is author or co-author of more than 60 peer-reviewed international scientific publications.
TRANSPORT IN THE ATMOSPHERE-VEGETATION-SOIL CONTINUUM

ARNOLD F. MOENE
Meteorology and Air Quality Group, Wageningen University

JOS C. VAN DAM
Soil Physics and Land Management Group, Wageningen University
Contents

Preface

1. The Atmosphere-Vegetation-Soil System
 1.1. Introduction
 1.2. Conservation of Energy and Mass
 1.2.1. Water Balance
 1.2.2. Energy Balance
 1.2.3. The Link: Evapotranspiration
 1.2.4. Simplified Balances
 1.3. Modes of Transport of Energy and Mass
 1.4. Setup of the Book

 2.1. Introduction
 2.2. Net Radiation
 2.2.1. Interaction between Radiation and the Atmosphere
 2.2.2. Downwelling Shortwave Radiation
 2.2.3. Reflected Shortwave Radiation
 2.2.4. Downwelling Longwave Radiation
 2.2.5. Emitted (and Reflected) Longwave Radiation
 2.2.6. Net Radiation: Sum of Components
 2.2.7. Measurement of Net Radiation
 2.3. Soil Heat Flux
 2.3.1. Bare Soil
 2.3.2. Heat Transport in Soils
 2.3.3. Thermal Properties of Soils
 2.3.4. Semi-infinite Homogeneous Soil with Sine-Wave at the Surface
 2.3.5. Force-Restore Method
 2.3.6. Vegetated Surfaces
 2.3.7. Measurement of Soil Heat Flux
 2.3.8. Snow and Ice
 2.4. Summary
3. Turbulent Transport in the Atmospheric Surface Layer 69
 3.1. Introduction 69
 3.2. Characteristics of Turbulent Diffusivities 71
 3.3. Turbulence 74
 3.3.1. Qualitative Description 74
 3.3.2. Intermezzo: Conserved Quantities, Scalars and Vectors 76
 3.3.3. Statistical Description of Turbulence 77
 3.3.4. Buoyancy 82
 3.3.5. Turbulent Kinetic Energy 84
 3.4. Turbulent Transport 87
 3.4.1. Mean Vertical Flux Density 87
 3.4.2. Eddy-Covariance Method 89
 3.4.3. The Atmospheric Surface-Layer and the Roughness Sublayer 95
 3.5. Similarity Theory 98
 3.5.1. Dimensionless Gradients: Relevant Variables in MOST 99
 3.5.2. Physical Interpretation of z/L and Its Relationship to the Richardson Number 102
 3.5.3. Similarity Relationships for Gradients 104
 3.5.4. Gradients and Profiles Under Neutral Conditions 106
 3.5.5. Gradients and Profiles Under Conditions Affected by Buoyancy 108
 3.5.6. Similarity Theory: Final Remarks 111
 3.6. Practical Applications of Similarity Relationships 117
 3.6.1. Fluxes from Observations at Two Levels 117
 3.6.2. Fluxes from Observations at a Single Level in the Air and One at the Surface 118
 3.6.3. Analytical Solutions for the Integrated Flux–Gradient Relationships 125
 3.6.4. Feedback Between Stability and the Sensible Heat Flux for Stable Conditions 127
 3.6.5. The Schmidt Paradox 128
 3.7. Summary 130

4. Soil Water Flow 133
 4.1. Introduction 133
 4.2. Field Water Balance 136
 4.3. Hydraulic Head 139
 4.3.1. Hydraulic Head of Groundwater 140
 4.3.2. Hydraulic Head of Soil Water 141
 4.3.3. Hydraulic Head of Water Vapour 145
 4.4. The Soil Water Characteristic 145
 4.5. Darcy’s Law 149
 4.5.1. Saturated Soil 149
 4.5.2. Unsaturated Soil 152
 4.7. Soil Hydraulic Functions 155
 4.8. Infiltration 156
 4.8.1. Horton Infiltration Model 158
 4.8.2. Green–Ampt Infiltration Model 159
Contents

4.9. Capillary Rise 163
4.10. Measurement of Soil Water Pressure Head 164
 4.10.1. Piezometer 164
 4.10.2. Tensiometer 165
4.11. Measurement of Soil Water Content 168
 4.11.1. Gravimetric and Volumetric Soil Water Content 168
 4.11.2. Measurement by Oven Drying 169
 4.11.3. Measurement by Time Domain Reflectometry 169
4.14. Summary 175

5. Solute Transport in Soil 177
 5.1. Introduction 177
 5.2. Solute Flux through Soil 178
 5.3. Convection–Dispersion Equation 181
 5.4. Transport of Inert, Nonadsorbing Solutes 182
 5.5. Transport of Inert, Adsorbing Chemicals 185
 5.6. Reactions of Chemicals in Soil 188
 5.7. Salinization of Root Zones 190
 5.8. Pesticide Pollution of Groundwater 192
 5.9. Residence Time in Groundwater 193
 5.10. Simulation of Solute Transport 197
 5.11. Summary 198

6. Vegetation: Transport Processes Inside and Outside of Plants 200
 6.1. Functions of Water in the Plant 200
 6.2. Root Water Uptake 201
 6.2.1. Functions of Roots 201
 6.2.2. Structure of the Root Tip 202
 6.2.3. Physiology of Root Water Uptake 204
 6.2.4. Modelling of Root Water Uptake 206
 6.3. Water Flow within the Plant 215
 6.4. Transpiration, Photosynthesis and Stomatal Control 219
 6.4.1. Transpiration 219
 6.4.2. Photosynthesis 222
 6.4.3. Stomatal Behaviour 226
 6.4.4. CO₂ Exchange at the Ecosystem Level 230
 6.5. Dry Matter Production 232
 6.6. Microclimate 236
 6.6.1. Radiation 238
 6.6.2. Air Temperature 241
 6.6.3. Wind Speed 241
 6.6.4. Leaf Temperature 242
 6.6.5. Dew 244
 6.7. Rainfall Interception 246
 6.8. Summary 250
7. Combination Methods for Turbulent Fluxes

7.1. Bowen Ratio Method
 7.1.1. Sensible and Latent Heat Flux
 7.1.2. Trace Gases

7.2. Penman–Monteith Equation
 7.2.1. Penman Derivation
 7.2.2. Penman–Monteith Derivation
 7.2.3. Canopy Resistance
 7.2.4. Analysis of Evapotranspiration from Different Surface Types

7.3. Derived Evapotranspiration Models
 7.3.1. Equilibrium Evaporation
 7.3.2. Priestley–Taylor Equation
 7.3.3. Makkink Equation

7.4. Dewfall

7.5. Summary

8. Integrated Applications

8.1. Crop Water Requirements
 8.1.1. Definitions of Terms and Units
 8.1.2. Factors Affecting Evapotranspiration
 8.1.3. Crop Factor Method: General Structure
 8.1.4. Crop Factor Method: Penman–Monteith Equation for E_{ref}
 8.1.5. Crop Factor Method: Makkink Equation for E_{ref}

8.2. Evapotranspiration Measurement: Lysimeters

8.3. Water Productivity at Field and Regional Scale
 8.3.1. Introduction
 8.3.2. Sirsa District
 8.3.3. Modelling Tools
 8.3.4. Measurements
 8.3.5. Yield Gap
 8.3.6. Crop Yields at Field Scale
 8.3.7. Water Productivity at a Regional Scale
 8.3.8. Scenario Analysis
 8.3.9. Satellite Data Assimilation

 8.4.1. Data
 8.4.2. Energy Balance during Normal Summers
 8.4.3. Energy Balance during Heat Wave Conditions
 8.4.4. Temporal Development of the Energy and Water Balance

9. Integrated Models in Hydrology and Meteorology

9.1. SWAP
 9.1.1. Introduction
 9.1.2. Soil Water Flow
 9.1.3. Top Boundary Condition Hydrology
 9.1.4. Bottom Boundary Condition Hydrology
 9.1.5. Lateral Drainage
 9.1.6. Solute Transport
Preface

This book has its roots in courses on Micrometeorology by Henk de Bruin and courses on Soil Physics and Agrohydrology by Reinder Feddes and colleagues at Wageningen University and Research Centre. Most universities teach these subjects in separate courses. In 2007, during a BSc-education reprogramming round at Wageningen University, micrometeorology, soil physics and agrohydrology were brought together in the current course ‘Atmosphere-Vegetation-Soil Interactions’. As teachers we had our reservations, but it turned out to work very well.

The interface between atmosphere and land is the location where both domains exchange energy, water and carbon. On the one hand, processes in soil and vegetation influence the development in the atmosphere (e.g., cloud formation). On the other hand, the atmospheric conditions determine to a large extent what happens below the soil surface (e.g., through the extraction of water for transpiration). Many environmental challenges, whether they concern climate change in drought-prone areas, salinization of coastal regions, development and spread of plant pathogens, natural vegetation impoverishment due to deep drainage or low water use efficiency in irrigated agriculture, have their origin in close interactions between atmosphere and land. To understand these processes and solve practical problems, students and professionals should have operational knowledge of transport processes in both domains and be able to understand how the atmosphere affects the land and vice versa.

This book intends to provide a consistent overview of the processes that occur in the continuum that extends from a few metres below the soil surface to roughly a hundred metres above it. It has been a challenge to connect the various disciplines that are active within this continuum: soil physics, ecohydrology, plant physiology and micrometeorology. The result is a unique text that covers all these disciplines on a scientific level that gives students a good preparation for continued education and thesis research. The ample use of up-to-date references to literature provides the student with starting points for further study. Questions and problems are interspersed with the text and answers to all questions are provided.
Preface

We gratefully acknowledge the contributions (direct or through inspiration) made by Henk de Bruin, Reinder Feddes and colleagues to the original lecture notes. Furthermore, we thank all the people who were involved in the collection of data that are used as illustrations in the text. Finally, we are grateful to Joel Schröter, Miranda Braam, Bert Holtslag and Reinder Ronda for their numerous comments on the text.