FRACTURE MECHANICS

Fracture and “slow” crack growth reflect the response of a material (i.e., its microstructure) to the conjoint actions of mechanical and chemical driving forces and are affected by temperature. Therefore, there is a need for quantitative understanding and modeling of the influences of chemical and thermal environments, and of microstructure, in terms of the key internal and external variables and for their incorporation into design and probabilistic implications. This text, which the author has used in a fracture mechanics course for advanced undergraduate and graduate students, is based on the work of the author’s Lehigh University team whose integrative research combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys, and ceramics. Examples from this research are included to highlight the approach and applicability of the findings in practical durability and reliability problems.

Robert P. Wei is the Reinhold Professor of Mechanical Engineering and Mechanics at Lehigh University. His principal research is in fracture mechanics, including chemical, microstructural, and mechanical considerations of stress corrosion cracking, fatigue, and corrosion, and in life-cycle engineering. He is the author of hundreds of refereed research publications. He is a Fellow of the American Society for Testing and Materials; the American Society of Metals International; and the American Institute of Mining, Metallurgical, and Petroleum Engineering and a member of Sigma Xi and the Phi Beta Delta International Honor Societies.
Fracture Mechanics

INTEGRATION OF MECHANICS, MATERIALS SCIENCE, AND CHEMISTRY

Robert P. Wei
Lehigh University
To Lee

For her love, counsel, dedication, and support
Contents

Preface

Acknowledgments

1 **Introduction** ... 1

1.1 Contextual Framework 2

1.2 Lessons Learned and Contextual Framework 4

1.3 Crack Tolerance and Residual Strength 5

1.4 Crack Growth Resistance and Subcritical Crack Growth 7

1.5 Objective and Scope of Book 7

REFERENCES 8

2 **Physical Basis of Fracture Mechanics** 9

2.1 Classical Theories of Failure 9

2.1.1 Maximum Principal Stress (or Tresca [3]) Criterion 9

2.1.2 Maximum Shearing Stress Criterion 10

2.1.3 Maximum Principal Strain Criterion 10

2.1.4 Maximum Total Strain Energy Criterion 10

2.1.5 Maximum Distortion Energy Criterion 11

2.1.7 Comments on the Classical Theories of Failure 12

2.2 Further Considerations of Classical Theories 12

2.3 Griffith’s Crack Theory of Fracture Strength 14

2.4 Modifications to Griffith’s Theory 16

2.5 Estimation of Crack-Driving Force G from Energy Loss Rate (Irwin and Kies [8, 9]) 17

2.6 Experimental Determination of G 20

2.7 Fracture Behavior and Crack Growth Resistance Curve 21

REFERENCES 25
3 Stress Analysis of Cracks

3.1 Two-Dimensional Theory of Elasticity
- **3.1.1 Stresses**: 26
- **3.1.2 Equilibrium**: 27
- **3.1.3 Stress-Strain and Strain-Displacement Relations**: 28
- **3.1.4 Compatibility Relationship**: 29

3.2 Airy’s Stress Function
- **3.2.1 Basic Formulation**: 30
- **3.2.2 Method of Solution Using Functions of Complex Variables**: 32
 - Complex Numbers
 - Complex Variables and Functions
 - Cauchy-Riemann Conditions and Analytic Functions

3.3 Westergaard Stress Function Approach [8]
- **3.3.1 Stresses**: 34
- **3.3.2 Displacement (Generalized Plane Stress)**: 35
- **3.3.3 Stresses at a Crack Tip and Definition of Stress Intensity Factor**: 36

3.4 Stress Intensity Factors – Illustrative Examples
- **3.4.1 Central Crack in an Infinite Plate under Biaxial Tension (Griffith Problem)**: 39
 - Stress Intensity Factor
 - Displacements
- **3.4.2 Central Crack in an Infinite Plate under a Pair of Concentrated Forces [2–4]**: 41
- **3.4.3 Central Crack in an Infinite Plate under Two Pairs of Concentrated Forces**: 43
- **3.4.4 Central Crack in an Infinite Plate Subjected to Uniformly Distributed Pressure on Crack Surfaces**: 43

3.5 Relationship between G and K

3.6 Plastic Zone Correction Factor and Crack-Opening Displacement
- **Plastic Zone Correction Factor**: 47
- **Crack-Tip-Opening Displacement (CTOD)**: 48

3.7 Closing Comments

References

4 Experimental Determination of Fracture Toughness

4.1 Plastic Zone and Effect of Constraint

4.2 Effect of Thickness; Plane Strain versus Plane Stress

4.3 Plane Strain Fracture Toughness Testing
- **4.3.1 Fundamentals of Specimen Design and Testing**: 55
- **4.3.2 Practical Specimens and the “Pop-in” Concept**: 58
- **4.3.3 Summary of Specimen Size Requirement**: 60
4.3.4 Interpretation of Data for Plane Strain Fracture Toughness Testing
4.4 Crack Growth Resistance Curve
4.5 Other Modes/Mixed Mode Loading
REFERENCES

5 Fracture Considerations for Design (Safety) 72
5.1 Design Considerations (Irwin’s Leak-Before-Break Criterion) 72
 5.1.1 Influence of Yield Strength and Material Thickness 74
 5.1.2 Effect of Material Orientation 74
5.2 Metallurgical Considerations (Krafft’s Tensile Ligament Instability Model [4]) 75
5.3 Safety Factors and Reliability Estimates 78
 5.3.1 Comparison of Distribution Functions 81
 5.3.2 Influence of Sample Size 82
5.4 Closure 84
REFERENCES 85

6 Subcritical Crack Growth: Creep-Controlled Crack Growth 86
6.1 Overview 86
6.2 Creep-Controlled Crack Growth: Experimental Support 87
6.3 Modeling of Creep-Controlled Crack Growth 90
 6.3.1 Background for Modeling 92
 6.3.2 Model for Creep 93
 6.3.3 Modeling for Creep Crack Growth 94
6.4 Comparison with Experiments and Discussion 97
 6.4.1 Comparison with Experimental Data 97
 6.4.2 Model Sensitivity to Key Parameters 99
6.5 Summary Comments 101
REFERENCES 101

7 Subcritical Crack Growth: Stress Corrosion Cracking and Fatigue Crack Growth (Phenomenology) 103
7.1 Overview 103
7.2 Methodology 104
 7.2.1 Stress Corrosion Cracking 106
 7.2.2 Fatigue Crack Growth 108
 7.2.3 Combined Stress Corrosion Cracking and Corrosion Fatigue 110
7.3 The Life Prediction Procedure and Illustrations [4] 111
 Example 1 – Through-Thickness Crack 111
 Example 2 – For Surface Crack or Part-Through Crack 114
7.4 Effects of Loading and Environmental Variables 115
8 Subcritical Crack Growth: Environmentally Enhanced Crack Growth under Sustained Loads (or Stress Corrosion Cracking) 120
 8.1 Overview 120
 8.2 Phenomenology, a Clue, and Methodology 121
 8.3 Processes that Control Crack Growth 123
 8.4 Modeling of Environmentally Enhanced (Sustained-Load) Crack Growth Response 124
 Modeling Assumptions 126
 8.4.1 Gaseous Environments 127
 8.4.1.1 Transport-Controlled Crack Growth 129
 8.4.1.2 Surface Reaction and Diffusion-Controlled Crack Growth 130
 8.4.2 Aqueous Environments 131
 8.4.3 Summary Comments 133
 8.5 Hydrogen-Enhanced Crack Growth: Rate-Controlling Processes and Hydrogen Partitioning 133
 8.6 Electrochemical Reaction-Controlled Crack Growth (Hydrogen Embrittlement) 137
 8.7 Phase Transformation and Crack Growth in Yttria-Stabilized Zirconia 141
 8.8 Oxygen-Enhanced Crack Growth in Nickel-Based Superalloys 143
 8.8.1 Crack Growth 144
 8.8.2 High-Temperature Oxidation 146
 8.8.3 Interrupted Crack Growth 148
 8.8.3.1 Mechanically Based (Crack Growth) Experiments 148
 8.8.3.2 Chemically Based Experiments (Surface Chemical Analyses) 149
 8.8.4 Mechanism for Oxygen-Enhanced Crack Growth in the P/M Alloys 153
 8.8.5 Importance for Material Damage Prognosis and Life Cycle Engineering 154
 8.9 Summary Comments 155
 REFERENCES 155

9 Subcritical Crack Growth: Environmentally Assisted Fatigue Crack Growth (or Corrosion Fatigue) 158
 9.1 Overview 158
 9.2 Modeling of Environmentally Enhanced Fatigue Crack Growth Response 158
 9.2.1 Transport-Controlled Fatigue Crack Growth 160
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.2 Surface/Electrochemical Reaction-Controlled Fatigue Crack Growth</td>
<td>161</td>
</tr>
<tr>
<td>9.2.3 Diffusion-Controlled Fatigue Crack Growth</td>
<td>162</td>
</tr>
<tr>
<td>9.2.4 Implications for Material/Response</td>
<td>162</td>
</tr>
<tr>
<td>9.2.5 Corrosion Fatigue in Binary Gas Mixtures [3]</td>
<td>162</td>
</tr>
<tr>
<td>9.2.6 Summary Comments</td>
<td>164</td>
</tr>
<tr>
<td>9.3 Moisture-Enhanced Fatigue Crack Growth in Aluminum Alloys [1, 2, 5]</td>
<td>164</td>
</tr>
<tr>
<td>9.3.1 Alloy 2219-T851 in Water Vapor [1, 2]</td>
<td>164</td>
</tr>
<tr>
<td>9.3.2 Alloy 7075-T651 in Water Vapor and Water [5]</td>
<td>167</td>
</tr>
<tr>
<td>9.3.3 Key Findings and Observations</td>
<td>168</td>
</tr>
<tr>
<td>9.4.1 Influence of Water Vapor Pressure on Fatigue Crack Growth</td>
<td>169</td>
</tr>
<tr>
<td>9.4.2 Surface Reaction Kinetics</td>
<td>169</td>
</tr>
<tr>
<td>9.4.3 Transport Control of Fatigue Crack Growth</td>
<td>171</td>
</tr>
<tr>
<td>9.4.4 Hydride Formation and Strain Rate Effects</td>
<td>173</td>
</tr>
<tr>
<td>9.5 Microstructural Considerations</td>
<td>175</td>
</tr>
<tr>
<td>9.6 Electrochemical Reaction-Controlled Fatigue Crack Growth</td>
<td>177</td>
</tr>
<tr>
<td>9.7 Crack Growth Response in Binary Gas Mixtures</td>
<td>180</td>
</tr>
<tr>
<td>9.8 Summary Comments</td>
<td>180</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>181</td>
</tr>
</tbody>
</table>

10 Science-Based Probability Modeling and Life Cycle Engineering and Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>183</td>
</tr>
<tr>
<td>10.2 Framework</td>
<td>184</td>
</tr>
<tr>
<td>10.3 Science-Based Probability Approach</td>
<td>185</td>
</tr>
<tr>
<td>10.3.1 Methodology</td>
<td>185</td>
</tr>
<tr>
<td>10.3.2 Comparison of Approaches</td>
<td>186</td>
</tr>
<tr>
<td>10.4 Corrosion and Corrosion Fatigue in Aluminum Alloys, and Applications</td>
<td>187</td>
</tr>
<tr>
<td>10.4.1 Particle-Induced Pitting in an Aluminum Alloy</td>
<td>187</td>
</tr>
<tr>
<td>10.4.2 Impact of Corrosion and Fatigue Crack Growth on Fatigue Lives (S-N Response)</td>
<td>191</td>
</tr>
<tr>
<td>10.4.3 S-N versus Fracture Mechanics (FM) Approaches to Corrosion Fatigue and Resolution of a Dichotomy</td>
<td>193</td>
</tr>
<tr>
<td>10.4.4 Evolution and Distribution of Damage in Aging Aircraft</td>
<td>193</td>
</tr>
<tr>
<td>10.5 S-N Response for Very-High-Cycle Fatigue (VHCF)</td>
<td>194</td>
</tr>
<tr>
<td>10.6 Summary</td>
<td>197</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>197</td>
</tr>
</tbody>
</table>

APPENDIX: Publications By R. P. Wei and Colleagues 199

Overview/General 199
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture</td>
<td>200</td>
</tr>
<tr>
<td>Stress Corrosion Cracking/Hydrogen-Enhanced Crack Growth</td>
<td>200</td>
</tr>
<tr>
<td>Deformation (Creep) Controlled Crack Growth</td>
<td>203</td>
</tr>
<tr>
<td>Oxygen-Enhanced Crack Growth</td>
<td>203</td>
</tr>
<tr>
<td>Fatigue/Corrosion Fatigue</td>
<td>204</td>
</tr>
<tr>
<td>Fatigue Mechanisms</td>
<td>206</td>
</tr>
<tr>
<td>Ceramics/Intermetallics</td>
<td>211</td>
</tr>
<tr>
<td>Material Damage Prognosis/Life Cycle Engineering</td>
<td>211</td>
</tr>
<tr>
<td>Failure Investigations/Analyses</td>
<td>213</td>
</tr>
<tr>
<td>Analytical/Experimental Techniques</td>
<td>213</td>
</tr>
</tbody>
</table>
Preface

Engineering Fracture Mechanics, as a recognized branch of engineering mechanics, had its beginning in the late 1940s and early 1950s, and experienced major growth through the next three decades. The initial efforts were driven primarily by naval and aerospace interests. By the end of the 1980s, most of the readily tractable mechanics problems had been solved, and computational methods have become the norm in solving practical problems in fracture/structural integrity. On the living (“slow” crack growth) side, the predominant emphasis has been on empirical characterization and usage of data for life prediction and reliability assessments.

In reality, fracture and “slow” crack growth reflect the response of a material (i.e., its microstructure) to the conjoint actions of mechanical and chemical driving forces, and are affected by temperature. The need for quantitative understanding and modeling of the influences of chemical and thermal environments and of microstructure (i.e., in terms of the key internal and external variables), and for their incorporation into design, along with their probabilistic implications, began to be recognized in the mid-1960s.

With support from AFOSR, ALCOA, DARPA, DOE (Basic Energy Sciences), FAA, NSF, ONR, and others, from 1966 to 2008, the group at Lehigh University undertook integrative research that combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys and on ceramics. Examples from this research are included to highlight the approach and applicability of the findings in practical problems of durability and reliability. An appended list of publications provides references/sources for more detailed information on research from the overall program.

The title Fracture Mechanics: Integration of Fracture Mechanics, Materials Science, and Chemistry gives tribute to those who have shared the vision and have contributed to and supported this long-term, integrative effort, and to those who recognize the need and value for this multidisciplinary team effort.

The author has used the material in this book in a fracture mechanics course for advanced undergraduate and graduate students at Lehigh University. This book should also serve as a reference for the design and management of engineered systems.
Acknowledgments

The author acknowledges the invaluable contributions and dedication of his colleagues: Dr. Ye T. (Russell) Chou (Materials Science), Dr. Kamil Klier (Surface Chemistry), Dr. Gary Simmons (Surface Chemistry), Dr. D. Gary Harlow (Probability and Statistics/Mechanical Engineering & Mechanics), and Dr. Ming Gao (Materials Science), and the many postdoctoral researchers and graduate students in Mechanical Engineering and Mechanics, Materials Science and Engineering, and Surface Science and Electrochemistry, who made this possible. The author also acknowledges the International Multimedia Resource Center (IMRC) of Lehigh University, under the leadership of Johanna Brams, especially Nyko DePeyer and Dawn Dayawon, for their assistance in graphic arts and manuscript preparation, and Sharon Siegler, Lehigh University librarian, for her counsel and expert assistance.