Body MR Imaging at 3 Tesla
Body MR Imaging at 3 Tesla

Edited by

Ihab R. Kamel
Johns Hopkins School of Medicine, Baltimore, Maryland, USA

Elmar M. Merkle
Duke University School of Medicine, Durham, North Carolina, USA
Body MR imaging at 3 Tesla / edited by Ihab R. Kamel, Elmar M. Merkle

Library of Congress Cataloging-in-Publication Data
Body MR imaging at 3 Tesla / edited by Ihab R. Kamel, Elmar M. Merkle
P. cm.
Includes bibliographical references and index.
ISBN 978-0-521-19486-0 (Hardback)
[DNLM: 1. Magnetic Resonance Imaging—methods. WN 185]
RC78.7.N83B63 2011
616.07548—dc22
2010050337

ISBN 978-0-521-19486-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors, and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors, and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.
Contents

List of contributors vi
Foreword ix
Jonathan S. Lewin
Preface xi

1. Body MR imaging at 3T: basic considerations about artifacts and safety 1
 Kevin J. Chang and Ihab R. Kamel

2. Novel acquisition techniques that are facilitated by 3T 12
 Hiroumi D. Kitajima, Puneet Sharma, Daniel R. Karolyi, and Diego R. Martin

3. Breast MR imaging 26
 Savannah C. Partridge, Habib Rahbar, and Constance D. Lehman

4. Cardiac MR imaging 34
 Christopher J. François, Oliver Wieben, and Scott B. Reeder

5. Abdominal and pelvic MR angiography 47
 Henrik J. Michaely

6. Liver MR imaging at 3T: challenges and opportunities 67
 Elizabeth M. Hecht and Bachir Taouli

7. MR imaging of the pancreas 82
 Sang Soo Shin, Chang Hee Lee, Rafael O. P. de Campos, and Richard C. Semelka

8. MR imaging of the adrenal glands 111
 Daniele Marin and Elmar M. Merkle

9. Magnetic resonance cholangiopancreatography 123
 Byun Ihn Choi and Jeong Min Lee

10. MR imaging of small and large bowel 134
 Manon L. W. Ziech, Marije P. van der Paardt, Aart J. Nederveen, and Jaap Stoker

11. MR imaging of the rectum, 3T vs. 1.5T 150
 Monique Maas, Doenja M. J. Lambregts, and Regina G. H. Beets-Tan

12. Imaging of the kidneys and MR urography at 3T 164
 John R. Leyendecker

13. MR imaging and MR-guided biopsy of the prostate at 3T 178
 Katarzyna J. Macura and Jurgen J. Fütterer

14. Female pelvic imaging at 3T 197
 Darcy J. Wolfman and Susan M. Ascher

Index 206

The color plate section found between pp. 180 and 181.
Contributors

Susan M. Ascher, MD
Georgetown University Hospital,
Washington, DC, USA

Regina G. H. Beets-Tan, MD, PhD
Department of Radiology, Maastricht
University Medical Centre, Maastricht,
The Netherlands

Rafael O. P. de Campos, MD
Department of Radiology, University of North
Carolina at Chapel Hill, NC, USA

Kevin J. Chang, MD
Brown University Alpert Medical School,
Providence, RI, USA

Byun Ihn Choi, MD
Department of Radiology, Seoul National University,
College of Medicine, Seoul, South Korea

Christopher J. François, MD
Department of Radiology, University of Wisconsin –
Madison, Madison, WI, USA

Jurgen J. Fütterer, MD, PhD
Department of Radiology, Radboud University
Nijmegen Medical Centre, Nijmegen,
The Netherlands

Elizabeth M. Hecht, MD
Department of Radiology, Hospital of the University
of Pennsylvania, Philadelphia, PA, USA

Ihab R. Kamel, MD, PhD
The Johns Hopkins University School of Medicine,
The Russell H. Morgan Department of Radiology
and Radiological Science,
Baltimore, MD, USA

Daniel R. Karolyi, MD PhD
Clinically Applied Research Body MR imaging
Program, Department of Radiology, Emory
University School of Medicine, Atlanta,
GA, USA

Hiroumi D. Kitajima, PhD
Department of Radiology, Emory Healthcare, Inc.,
Atlanta, GA, USA

Doenja M. J. Lambregts, MD
Department of Radiology, Maastricht
University Medical Centre, Maastricht,
The Netherlands

Chang Hee Lee, MD
Department of Radiology, University of North
Carolina at Chapel Hill, NC, USA, and Korea
University Guro Hospital, Korea University
College of Medicine, South Korea

Jeong Min Lee, MD
Department of Radiology, Seoul National University,
College of Medicine, Seoul, South Korea

Constance D. Lehman, MD, PhD
Section of Breast Imaging, University of
Washington Medical Center, Seattle Cancer Care
Alliance, Seattle, WA, USA

John R. Leyendecker, MD
Department of Radiology and Magnetic Resonance
Imaging, Wake Forest University School of Medicine,
Winston-Salem, NC, USA

Monique Maas, MD
Department of Radiology, Maastricht University
Medical Centre, Maastricht, The Netherlands
List of contributors

Katarzyna J. Macura, MD, PhD
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA

Daniele Marin, MD
Department of Radiology, Duke University Medical Center, Durham, NC, USA

Diego R. Martin, MD, PhD
Clinically Applied Research Body MR Imaging Program, Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA

Elmar M. Merkle, MD
Department of Radiology, Duke University School of Medicine, Durham, NC, USA

Henrik J. Michaely, MD
Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – University of Heidelberg, Mannheim, Germany

Aart J. Nederveen, PhD
Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Savannah C. Partridge
Section of Breast Imaging, University of Washington Medical Center, Seattle Cancer Care Alliance, Seattle, WA, USA

Habib Rahbar
Section of Breast Imaging, University of Washington Medical Center, Seattle Cancer Care Alliance, Seattle, WA, USA

Scott B. Reeder, MD, PhD
Departments of Radiology, Medical Physics, Biomedical Engineering, and Medicine, University of Wisconsin – Madison, Madison, WI, USA

Richard C. Semelka, MD
Department of Radiology, University of North Carolina at Chapel Hill, NC, USA

Puneet Sharma, PhD
Department of Radiology, Emory Healthcare, Inc., Atlanta, GA, USA

Sang Soo Shin, MD
Department of Radiology, University of North Carolina at Chapel Hill, NC, USA, and Chonnam National University Medical School, Gwangju, South Korea

Jaap Stoker, MD, PhD
Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Bachir Taouli, MD
Department of Radiology, The Mount Sinai Medical Center, New York, NY, USA

Marije P. van der Paardt, MD
Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Oliver Wieben, PhD
Departments of Medical Physics and Radiology, Wisconsin Institutes for Medical Research, University of Wisconsin – Madison, Madison, WI, USA

Darcy J. Wolfman, MD
Georgetown University Hospital, Washington, DC, USA

Manon L. W. Ziech, MD
Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
Foreword

As the use of 3T systems evolves into the standard of care for body MR imaging, an in-depth understanding of the differences between body imaging at 3T versus 1.5T becomes critical for all diagnostic imagers. Up until now, a thorough knowledge of protocols, physics, and potential pitfalls in 3T MR imaging of the body has been limited to those radiologists with extensive experience at this higher field strength. Fortunately, with the publication of Body MR Imaging at 3 Tesla by Drs. Ihab Kamel and Elmar Merkle, this knowledge and insight is now available to a wide audience of diagnostic radiologists and other clinical imaging physicians. Drs. Merkle and Kamel are truly authorities in high-field body MR imaging; in this book, they have gathered additional experts from around the world to lend their own proficiency in MR imaging at 3T. The editors have done an outstanding job of choosing clinicians and scientists involved in the development and early adoption of 3T MR imaging of the body, and have created a compendium that will truly impact the field for years to come. It is a particular pleasure for me to write this introduction, as I have had the honor of working closely with Dr. Merkle for over 12 years and with Dr. Kamel for the past 7 years. Watching them produce this textbook is a pleasure only equaled by the satisfaction of reading its content. To you, the reader, I wish many hours of enjoyment and learning in your reading of this book, and I am certain your future patients will benefit from much that you learn in the process!

Jonathan S. Lewin, MD, FACR
Preface

The intent of *Body MR Imaging at 3 Tesla* is to provide a closer look at various MR applications within the chest, abdomen, and pelvis with specific emphasis on the effects of a higher 3T magnetic field strength.

Since the inception of MR imaging in the 1970s, radiologists have intensively searched for the optimal magnetic field strength, and this quest continues. In the early 1980s, a magnetic field strength of 0.3T was considered optimal. During the 1990s, we saw a shift toward 1T and 1.5T; and over the last ten years, we have seen a substantial trend toward 3T MR imaging. The search for higher field strength has been driven by the desire for an increase in signal-to-noise ratio, which can be kept to improve image quality, or traded for increased spatial resolution, improved temporal resolution, or both. Besides a gain in signal-to-noise ratio, other factors such as safety issues, image artifacts, and efficiency of contrast agents, to name a few, also have to be considered.

For this book, we are fortunate to have the contributions of many colleagues, all of whom were chosen as clinicians and scientists involved in the early adoption of 3T scanners in their practice. In the first chapter of this book, Dr. Kevin Chang and Dr. Ihab Kamel cover the basic concepts of MR physics and safety aspects relevant to the switch from 1.5T to 3T. Following this chapter, Dr. Diego Martin’s group discusses novel acquisition techniques that are facilitated by 3T. Dr. Connie Lehman’s group contributed the chapter on breast MR imaging, where early results at 3T have been both promising as well as challenging. Two cardiovascular research groups based in Madison/Wisconsin and Mannheim/Germany discuss cardiac as well as thoracoabdominal vascular MR. These chapters are followed by organ-specific contributions that examine in greater detail MR imaging of the liver, biliary system, pancreas, adrenals, kidneys, small bowel, large bowel and rectum. Finally, Dr. Katarzyna Macura and Dr. Susan Ascher’s groups provide their insights of the advantages of 3T MR imaging of the male and female pelvis, respectively.

As you read this book, it is our hope that you realize how little is scientifically proven about the advantages of 3T over 1.5T MR imaging. None of the contributors had a wealth of scientific literature to rely on, and there are topics such as renal MR imaging, where not a single comparison study is currently available. This is surprising since the US Food and Drug Administration (FDA) approved 3T MR systems for clinical use in 2002. Thus, despite the mostly marketing-driven hype about 3T, it currently remains unclear whether body MR imaging at 3T is superior to standard 1.5T MR imaging. Notwithstanding radiologists’ continued faith in the advantages of 3T, perhaps this book will provide the necessary guidance to make an informed choice between 3T and 1.5T body MR imaging rather than simply following the all-too-common “bigger must be better” approach.