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Preface

This is a book about algorithms for performing arithmetic, and their imple-
mentation on modern computers. We are concerned with software more than
hardware – we do not cover computer architecture or the design of computer
hardware since good books are already available on these topics. Instead, we
focus on algorithms for efficiently performing arithmetic operations such as
addition, multiplication, and division, and their connections to topics such
as modular arithmetic, greatest common divisors, the fast Fourier transform
(FFT), and the computation of special functions.

The algorithms that we present are mainly intended for arbitrary-precision
arithmetic. That is, they are not limited by the computer wordsize of 32 or 64
bits, only by the memory and time available for the computation. We consider
both integer and real (floating-point) computations.

The book is divided into four main chapters, plus one short chapter (essen-
tially an appendix). Chapter 1 covers integer arithmetic. This has, of course,
been considered in many other books and papers. However, there has been
much recent progress, inspired in part by the application to public key cryp-
tography, so most of the published books are now partly out of date or incom-
plete. Our aim is to present the latest developments in a concise manner. At the
same time, we provide a self-contained introduction for the reader who is not
an expert in the field.

Chapter 2 is concerned with modular arithmetic and the FFT, and their appli-
cations to computer arithmetic. We consider different number representations,
fast algorithms for multiplication, division and exponentiation, and the use of
the Chinese remainder theorem (CRT).

Chapter 3 covers floating-point arithmetic. Our concern is with high-
precision floating-point arithmetic, implemented in software if the precision
provided by the hardware (typically IEEE standard 53-bit significand) is
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x Preface

inadequate. The algorithms described in this chapter focus on correct round-
ing, extending the IEEE standard to arbitrary precision.

Chapter 4 deals with the computation, to arbitrary precision, of functions
such as sqrt, exp, ln, sin, cos, and more generally functions defined by power
series or continued fractions. Of course, the computation of special functions is
a huge topic so we have had to be selective. In particular, we have concentrated
on methods that are efficient and suitable for arbitrary-precision computations.

The last chapter contains pointers to implementations, useful web sites,
mailing lists, and so on. Finally, at the end there is a one-page Summary of
complexities which should be a useful aide-mémoire.

The chapters are fairly self-contained, so it is possible to read them out of
order. For example, Chapter 4 could be read before Chapters 1–3, and Chap-
ter 5 can be consulted at any time. Some topics, such as Newton’s method,
appear in different guises in several chapters. Cross-references are given where
appropriate.

For details that are omitted, we give pointers in the Notes and references
sections of each chapter, as well as in the bibliography. We have tried, as far
as possible, to keep the main text uncluttered by footnotes and references, so
most references are given in the Notes and references sections.

The book is intended for anyone interested in the design and implementation
of efficient algorithms for computer arithmetic, and more generally efficient
numerical algorithms. We did our best to present algorithms that are ready to
implement in your favorite language, while keeping a high-level description
and not getting too involved in low-level or machine-dependent details. An
alphabetical list of algorithms can be found in the index.

Although the book is not specifically intended as a textbook, it could be
used in a graduate course in mathematics or computer science, and for this
reason, as well as to cover topics that could not be discussed at length in the
text, we have included exercises at the end of each chapter. The exercises vary
considerably in difficulty, from easy to small research projects, but we have
not attempted to assign them a numerical rating. For solutions to the exercises,
please contact the authors.

We welcome comments and corrections. Please send them to either of the
authors.

Richard Brent and Paul Zimmermann
Canberra and Nancy

MCA@rpbrent.com
Paul.Zimmermann@inria.fr
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Notation

C set of complex numbers
Ĉ set of extended complex numbers C ∪ {∞}
N set of natural numbers (nonnegative integers)
N∗ set of positive integers N\{0}
Q set of rational numbers
R set of real numbers
Z set of integers
Z/nZ ring of residues modulo n

Cn set of (real or complex) functions with n continuous derivatives
in the region of interest

�(z) real part of a complex number z

�(z) imaginary part of a complex number z

z̄ conjugate of a complex number z

|z| Euclidean norm of a complex number z,
or absolute value of a scalar z

Bn Bernoulli numbers,
∑

n≥0 Bnzn/n! = z/(ez − 1)

Cn scaled Bernoulli numbers, Cn = B2n/(2n)! ,∑
Cnz2n = (z/2)/ tanh(z/2)

Tn tangent numbers,
∑

Tnz2n−1/(2n − 1)! = tan z

Hn harmonic number
∑n

j=1 1/j (0 if n ≤ 0)(
n
k

)
binomial coefficient “n choose k” = n!/(k! (n − k)!)
(0 if k < 0 or k > n)
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xiv Notation

β “word” base (usually 232 or 264) or “radix” (floating-point)
n “precision”: number of base β digits in an integer or in a

floating-point significand, or a free variable
ε “machine precision” β1−n/2 or (in complexity bounds)

an arbitrarily small positive constant
η smallest positive subnormal number

◦(x), ◦n(x) rounding of real number x in precision n (Definition 3.1)
ulp(x) for a floating-point number x, one unit in the last place

M(n) time to multiply n-bit integers, or polynomials of
degree n − 1, depending on the context

∼M(n) a function f(n) such that f(n)/M(n) → 1 as n → ∞
(we sometimes lazily omit the “∼” if the meaning is clear)

M(m,n) time to multiply an m-bit integer by an n-bit integer
D(n) time to divide a 2n-bit integer by an n-bit integer,

giving quotient and remainder
D(m,n) time to divide an m-bit integer by an n-bit integer,

giving quotient and remainder

a|b a is a divisor of b, that is b = ka for some k ∈ Z

a = b mod m modular equality, m|(a − b)
q ← a div b assignment of integer quotient to q (0 ≤ a − qb < b)
r ← a mod b assignment of integer remainder to r (0 ≤ r = a − qb < b)
(a, b) greatest common divisor of a and b(

a
b

)
or (a|b) Jacobi symbol (b odd and positive)

iff if and only if
i ∧ j bitwise and of integers i and j,

or logical and of two Boolean expressions
i ∨ j bitwise or of integers i and j,

or logical or of two Boolean expressions
i ⊕ j bitwise exclusive-or of integers i and j

i � k integer i multiplied by 2k

i � k quotient of division of integer i by 2k

a · b, a × b product of scalars a, b

a ∗ b cyclic convolution of vectors a, b

ν(n) 2-valuation: largest k such that 2k divides n (ν(0) = ∞)
σ(e) length of the shortest addition chain to compute e

φ(n) Euler’s totient function, #{m : 0 < m ≤ n ∧ (m,n) = 1}
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Notation xv

deg(A) for a polynomial A, the degree of A

ord(A) for a power series A =
∑

j ajz
j ,

ord(A) = min{j : aj �= 0} (ord(0) = +∞)

exp(x) or ex exponential function
ln(x) natural logarithm
logb(x) base-b logarithm ln(x)/ ln(b)
lg(x) base-2 logarithm ln(x)/ ln(2) = log2(x)
log(x) logarithm to any fixed base
logk(x) (log x)k

�x� ceiling function, min{n ∈ Z : n ≥ x}
�x� floor function, max{n ∈ Z : n ≤ x}
�x� nearest integer function, �x + 1/2�

sign(n) +1 if n > 0, −1 if n < 0, and 0 if n = 0
nbits(n) �lg(n)� + 1 if n > 0, 0 if n = 0

[a, b] closed interval {x ∈ R : a ≤ x ≤ b} (empty if a > b)
(a, b) open interval {x ∈ R : a < x < b} (empty if a ≥ b)
[a, b), (a, b] half-open intervals, a ≤ x < b, a < x ≤ b respectively

t[a, b] or [a, b]t column vector

(
a

b

)

[a, b; c, d] 2 × 2 matrix

(
a b

c d

)
âj element of the (forward) Fourier transform of vector a

ãj element of the backward Fourier transform of vector a

f(n) = O(g(n)) ∃c, n0 such that |f(n)| ≤ cg(n) for all n ≥ n0

f(n) = Ω(g(n)) ∃c > 0, n0 such that |f(n)| ≥ cg(n) for all n ≥ n0

f(n) = Θ(g(n)) f(n) = O(g(n)) and g(n) = O(f(n))
f(n) ∼ g(n) f(n)/g(n) → 1 as n → ∞
f(n) = o(g(n)) f(n)/g(n) → 0 as n → ∞
f(n) � g(n) f(n) = O(g(n))
f(n) � g(n) g(n) � f(n)
f(x) ∼ ∑n

0 aj/xj f(x) − ∑n
0 aj/xj = o(1/xn) as x → +∞

123 456 789 123456789 (for large integers, we may use a space after
every third digit)
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xvi Notation

xxx.yyyρ a number xxx.yyy written in base ρ;
for example, the decimal number 3.25 is 11.012 in binary

a
b+

c
d+

e
f+ · · · continued fraction a/(b + c/(d + e/(f + · · · )))

|A| determinant of a matrix A, e.g.

∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc

PV
∫ b

a
f(x) dx Cauchy principal value integral, defined by a limit

if f has a singularity in (a, b)

s || t concatenation of strings s and t

� <text> comment in an algorithm

end of a proof
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