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Introduction

Despite the fact that complex networks are the driving force behind the investi-
gation of the spectra of graphs, it is not the purpose of this book to dwell on
complex networks. A generally accepted, all-encompassing definition of a complex
network does not seem to be available. Instead, complex networks are understood
by instantiation: the Internet, transportation (car, train, airplane) and infrastruc-
tural (electricity, gas, water, sewer) networks, biological molecules, the human brain
network, social networks, software dependency networks, are examples of complex
networks. By now, there is such a large literature about complex networks, predom-
inantly in the physics community, that providing a detailed survey is a daunting
task. We content ourselves here with referring to some review articles by Strogatz
(2001); Newman et al. (2001); Albert and Barabasi (2002); Newman (2003b), and
to books in the field by Watts (1999); Barabasi (2002); Dorogovtsev and Mendes
(2003); Barrat et al. (2008); Dehmer and Emmert-Streib (2009); Newman (2010),
and to references in these works. Application of spectral graph theory to chemistry
and physics are found in Cvetkovíc et al. (1995, Chapter 8).
Complex networks can be represented by a graph, denoted by , consisting of a

set N of nodes connected by a set L of links. Sometimes, nodes and links are
called vertices and edges, respectively, and are correspondingly denoted by the set
and . Here and in my book on Performance Analysis (Van Mieghem, 2006b),

a graph is denoted by (N L) or ( ) to avoid conflicts with the expectation
operator in probability theory. There is no universal notation of a graph, although
in graph theory = ( ) often occurs, while in network theory and other applied
fields, nodes and links are used and the notation ( ) appears. None of these
notations is ideal nor optimized, but fortunately in most cases, the notation for
a graph seems su cient.
Graphs, in turn, can be represented by a matrix (art. 1). The simplest among

these graph-associated matrices is the adjacency matrix , whose entries or ele-
ments are

= 1{node is connected to node } (1.1)

where 1 is the indicator function and equal to one if the is true, else it is zero.
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2 Introduction

All elements of the adjacency matrix are thus either 1 or 0 and is symmetric
for undirected graphs. Unless mentioned otherwise, we assume in this book that
the graph is undirected and that (and other graph-associated matrices) are sym-
metric. If the graph consists of nodes and links, then art. 151 demonstrates
that the × symmetric adjacency matrix can be written as

= (1.2)

where the × orthogonal matrix contains as columns the eigenvectors 1 2,...,
of belonging to the real eigenvalues 1 2 and where the matrix
= diag( ). This basic relation (1.2) equates the topology domain, represented

by the adjacency matrix, to the spectral domain of the graph, represented by the
eigensystem in terms of the orthogonal matrix of eigenvectors and the diagonal
matrix with corresponding eigenvalues. The major di culty lies in the map from
topology to spectral domain, , because the inverse map from spectral
to topology domain, , consists of straightforward matrix multiplica-
tions. Thus, most of the e orts in this book lie in computing or deducing properties
of and , given . Even more confining, most energy is devoted to and the
distribution and properties of the eigenvalues { }1 of and of other graph
related matrices. It is fair to say that not too much is known about the eigenvec-
tors and the distribution and properties of eigenvector components. A state of the
current art is presented by Cvetkovíc et al. (1997).

1.1 Interpretation and contemplation

One of the most studied eigenvalue problems is the stationary Schrödinger equation
in quantum mechanics (see, e.g., Cohen-Tannoudji et al. (1977)),

( ) = ( )

where ( ) is the wave function, is the energy eigenvalue of the Hamiltonian
(linear) di erential operator

=
}
2

2
+ ( )

in which the Laplacian operator is =
2

2 +
2

2 +
2

2 , } = 2 and ' 6 62 ×
10 34Js is Planck’s constant, is the mass of an object subject to a potential
field ( ) and is a three-dimensional location vector. The wave function ( )

is generally complex, but | ( )|2 represents the density function of the probability
that the object is found at position . The mathematical theory of second-order
linear di erential operators is treated, for instance, by Titchmarsh (1962, 1958).
While the interpretation of the eigenfunction ( ) of the Hamiltonian , the

continuous counterpart of an eigenvector with discrete components, and its corre-
sponding energy eigenvalue is well understood, the meaning of an eigenvector of
a graph is rather vague and not satisfactory. An attempt is as follows. The basic
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1.1 Interpretation and contemplation 3

equation (8.1) of the eigenvalue problem, = , combined with the zero-one na-
ture of the adjacency matrix , states that the -th component of the eigenvector
belonging to eigenvalue can be written as

( ) = ( ) =
X
=1

( ) =
X

is a direct neighbor of

( ) (1.3)

Since = 0, the eigenvector component ( ) weighted (multiplied) by the eigen-
value equals the sum of the other eigenvector components ( ) over all direct
neighbors of node . Since all eigenvectors are orthogonal1, each eigenvector can
be interpreted as describing a di erent inherent property of the graph. What that
property means is yet unclear, but the eigenvalue basic equation (1.2) says that
there are only such inherent properties, and the orthogonality of or of the
eigenvectors tells us that these inherent properties are independent. The above
component equation (1.3) then expresses that the value ( ) of the inherent prop-
erty , belonging to the eigenvalue and specified by the eigenvector , at each
node equals a weighted sum of those values ( ) over all its direct neighbors ,
and each such sum has a same weight 1 (provided 6= 0, else one may say that
the average over all direct neighbors of those values ( ) is zero). Since both sides
of the basic equation (8.1), = , can be multiplied by some non-zero number
or quantity, we may interpret that the value of property is expressed in di er-
ent “physical” units. Perhaps, depending on the nature of the complex network,
some of these units can be determined or discovered, but the pure mathematical
description (8.1) of the eigenvalue problem does not contain this information. Al-
though the focus here is on eigenvectors, equation (1.3) also provides interesting
information about the eigenvalues, for which we refer to art. 172.
Equation (1.3) reflects a local property with value ( ) that only depends the

corresponding values ( ) of direct neighbors. But this local property for node
holds globally for any node , with a same strength or factor . This local

and global aspect of the eigenstructure is another fascinating observation, that is
conserved after “self-replication”. Indeed, using (1.3) with index = into (1.3)
yields

2 ( ) =
X
1=1

1

X
2=1

1 2 ( )
2
=
X
2=1

¡
2
¢

2
( )

2

= ( ) +
X

2 is a second hop neighbor of

( )
2

since (see art. 30)
¡

2
¢

=
P

=1 =
P

=1
2 by symmetry

¡
=

¢
,

and
P

=1
2 =

P
=1 = due to the zero-one nature of , and where is

the degree, the number of neighbors, of node . The idea can be continued and a
1 Mathematically, the eigenvectors form an orthogonal basis that spans the entire -dimensional
space. Each eigenvector “adds” or specifies one dimension or one axis (orthogonal to all others)
in that -dimensional coordinate frame.
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4 Introduction

subsequent substitution of (1.3) leads to an expression that involves a sum over all
three hops nodes away from node . Subsequent iterations relate the expansion of
the graph around node in the number of hops , further elaborated in art. 17
and art. 36, to the eigenvalue structure as

n
( )

o
( ) =

X
is an -th hop neighbor of

( ) (1.4)

Again, this local expansion around node holds globally for any node .
The alternative representation (8.31)

=
X
=1

shows that there is a hierarchy in importance of the properties, specified by the
absolute value of the eigenvalues, because all eigenvectors are scaled to have equal
unit norm. In particular, possible zero eigenvalues contain properties that the graph
does not possess, because the corresponding eigenvectors do not contribute to the
structure — the adjacency matrix — of the graph. In contrast, the properties
belonging to the largest (in absolute value) eigenvalues have a definite and strong
influence on the graph structure.
Another observation2 is that the definition of the adjacency matrix is somewhat

arbitrary. Indeed, we may agree to assign the value to the existence of a link and
otherwise, where and 6= can be any complex number. Clearly, the graph is

then equally well described by a new adjacency matrix ( ) = ( ) + ,
where is the all-one matrix. Unless = 1 and = 0, the eigenvalues and
eigenvectors of ( ) are di erent from those of . This implies that an entirely
di erent, but still consistent theory of the spectra of graphs can be built. We have
not pursued this track here, although we believe that for certain problems a more
appropriate choice of and may simplify the solution.
When encountering the subject for the first time, one may be wondering where all

the energy is spent, because the problem of finding the eigenvalues of , reviewed in
Chapter 8, basically boils down to solving the zeros of the associated characteristic
polynomial (art. 138). In addition, we know (art. 1), due to symmetry of , that
all zeros are real, a fact that considerably simplifies matters as shown in Chapter 9.
For, nearly all of the polynomials with real coe cients possess complex zeros, and
only a very small subset has zeros that are all real. This suggests that there must
be something special about these eigenvalues and characteristic polynomials of .
There is one most fascinating class of polynomials with real coe cients whose zeros
are all real: orthogonal polynomials, which are studied in Chapter 10. In some
particular cases, there is, indeed, a relation between the spectrum (eigenvalues) of
the graph and the zeros of orthogonal polynomials.
Much of the research in the spectral analysis of graphs is devoted to understand

2 Communicated to me by Dajie Liu.
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1.2 Outline of the book 5

Fig. 1.1. A realization of an Erdős-Rényi random graph ( ) with = 400 nodes,
= 793 links and average degree 2 of about 4. The link density ' 10 2 equals the

probability to have a link between two arbitrary chosen nodes in ( ). The size of a
node is drawn proportional to its degree.

properties of the graph by inspecting the spectra of mainly two matrices, the ad-
jacency matrix and the Laplacian , defined in art. 2. For example, how does
the spectrum show that a graph is connected? What is the physical meaning of the
largest and smallest eigenvalue, how large or small can they be? How are eigenval-
ues changing when nodes and/or links are added to the graph? Deeper questions
are, “Is alone, without in (1.2), su cient to characterize a graph?”, “How
are the spacings, the di erences between consecutive eigenvalues, distributed and
what do spacings physically mean?”, or, extremal problems as “What is the class of
graphs on nodes and links that achieves the largest second smallest eigenvalue
of the Laplacian?”, and so on.

1.2 Outline of the book

Chapter 2 introduces some definitions and concepts of algebraic graph theory, which
are needed in Part I. We embark on the subject in Chapter 3 that focuses on
the eigenvalues of the adjacency matrix . In Chapter 4, we continue with the
investigation of the spectrum of the Laplacian . As argued by Mohar, the theory
of the Laplacian spectrum is richer and contains more beautiful achievements than
that of the adjacency matrix. In Chapter 5, we compute the entire adjacency
spectrum and sometimes also the Laplacian spectrum of special types of classes
containing at least one variable parameter such as the number of nodes or/and
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6 Introduction

Fig. 1.2. An instance of a Barabási-Albert graph with = 400 nodes and = 780 links,
which is about the same as in Fig. 1.1. The size of a node is drawn proportional to its
degree.

Fig. 1.3. The Watts-Strogatz small world graph on = 100 nodes and with nodal degree
= 4 (or = 2 as explained in Section 5.2) and rewiring probability = 1

100
.

the number links . This chapter thus illustrates the theory of Chapter 3 and
Chapter 4 by useful examples. In fact, the book originated from Chapter 5 and it
was a goal to collect all spectra of graphs (with at least one parameter that can be
varied). The underlying thought was to explain the spectrum of a complex network
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1.3 Classes of graphs 7

by features appearing in “known spectra”. Chapter 6 complements Chapter 5
asymptotically when graphs grow large, . For large graphs, the density or
distribution of the eigenvalues (as nearly continuous variables) is more appealing
and informative than the long list of eigenvalues. Apart from the three marvelous
scaling laws by Wigner, Marc̆enko-Pastur and McKay, we did not find many explicit
results on densities of eigenvalues of graphs. Finally, Chapter 7, the last chapter
of Part I, applies the spectral knowledge of the previous chapters to gain physical
insight into the nature of complex networks.
As mentioned in the Preface, the results derived in Part I have been built on the

general theory of linear algebra and of polynomials with real coe cients summarized
in Part II.

Fig. 1.4. A Barabási “fractal-like” tree with = 1000 nodes, grown by adding at each
step one new node to nodes already in the tree and proportional to their degree.

1.3 Classes of graphs

The main classes of graphs in the study of complex networks are: the class of
Erdős-Rényi random graphs (Fig. 1.1), whose fascinating properties are derived
in Bollobas (2001); the class of Watts-Strogatz small-world graphs (Fig. 1.3) first
explored in Watts (1999); the class of Barabási-Albert power law graphs (Fig. 1.2
and Fig. 1.4) introduced by Barabási and Albert (1999); and the regular hyper-
lattices in several dimensions.
The Erdős-Rényi random graph is the simplest random model for a network. Its
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8 Introduction

analytic tractability in a wide range of graph problems has resulted in the richest
and most beautiful theory among classes of graphs. In many cases, the Erdős-Rényi
random graph serves as a basic model that provides a fast benchmark for first order
estimates and behaviors in real networks. Usually, if a graph problem cannot be
solved analytically for the Erdős-Rényi random graph or for hyper-lattices, few
hope exists that other classes of (random) graphs may have a solution. However,
in particular the degree distribution of complex networks does not match well with
the binomial degree distribution of Erdős-Rényi random graphs (drawn in Fig. 1.5)
and this observation has spurred the search for “more realistic models”.
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Fig. 1.5. The probability density function (pdf) of the nodal degree in the Erdős-Rényi
random graph shown in Fig. 1.1 and in the Barabási-Albert power law graph in Fig. 1.2.

The Watts-Strogatz small-world graphs (after random rewiring of links) possesses
a relatively high clustering and short hopcount. The probability that a link is
rewired seems to be a powerful tool in Watts-Strogatz small-world graphs to balance
between “long hopcounts” ( is small) and “small-worlds” ( 1).
The most distinguishing property of the Barabási-Albert power law graphs is the

power law degree distribution, Pr [ = ] with power index 3 for large
where is a normalization constant, which is observed as a major characteristic

in many real-world complex networks. Fig. 1.5 compares the degree distribution
of the Erdős-Rényi random graph shown in Fig. 1.1 and of the Barabási-Albert
power law graph in Fig. 1.2, both with the same number of nodes ( = 400) and
almost the same average degree ( [ ] = 4). The insert illustrates the characteristic
power law of the Barabási-Albert graph, recognized by a straight line in a log-log
plot. Most nodes in the Barabási-Albert power law graph have small degree, while
a few nodes have degree larger than 10 (which is the maximum degree in the
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1.3 Classes of graphs 9

Erdős-Rényi random graph with same number of nodes and links), and even one
node has 36 neighbors. A power law graph is often called a “scale-free graph”,
meaning that there is no typical scale for the degree. Thus, the standard deviation

=
p
Var [ ] is usually larger than the average [ ], such that the latter is not

a good estimate for the random variable of the degree, in contrast to Gaussian
or binomial distributions, where the bell-shape is centered around the mean with,
usually, small variance. Physically, power law behavior can be explained by the
notion of long-range dependence, heavy correlations over large spacial or temporal
intervals, and of self-similarity. A property is self-similar if on various scales (in
time or space) or aggregation levels (e.g., hierarchical structuring of nodes in a
network) about the same behavior is observed. The result is that a local property
is magnified or scaled-up towards a global extent. Mathematically, Pr [ = ]

, from which Pr
£

1 =
¤
= Pr [ = ]; scaling the property (here,

the degree ) by a factor 1 leads to precisely the same distribution, apart from
a proportionality constant . Thus, on di erent scales, the behavior “looks”
similar.
There is also a large number of more dedicated classes, such as Ramanujan

graphs and the Kautz graphs, shown in Fig. 1.6, that possess interesting extremal
properties. We will not further elaborate on the di erent properties of these classes;

Fig. 1.6. The Kautz graph of degree = 3 and of dimension = 3 has ( + 1) nodes
and ( + 1) +1 links. The Kautz graph has the smallest diameter of any possible directed
graph with nodes and degree .

we have merely included some of them here to illustrate that complex networks are
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10 Introduction

studied by comparing observed characteristics to those of “classes of graphs with
known properties”.

1.4 Outlook

I believe that we still do not understand “networks” su ciently. For example,
if the data (e.g., the adjacency matrix) of a large graph is given, and you are not
allowed to visualize the network, it seems quite complex to tell, by computing graph
metrics only, what the properties of the network are. You may list a large number
of topological metrics such as hopcount, eccentricity, diameter, girth, expansion,
betweenness, distortion, degree, assortativity, coreness, clique number, clustering
coe cient, vertex and edge connectivity and others. We as humans see a pile of
numbers, but often miss the overall picture and understanding.
I believe that the spectrum, that is for a su ciently large graph a unique fin-

gerprint as conjectured in van Dam and Haemers (2003), may reveal much more.
First, graph or topology metrics are generally correlated and dependent. In con-
trast, eigenvalues weigh the importance of eigenvectors, that are all orthogonal,
which makes the spectrum a more desirable device. Second, the belief in the spec-
trum stems from earlier research in condensed matter (Borghs et al., 1989), where
we have deduced from the photoluminescence spectra, quite useful and precise in-
formation about the structural properties of doped GaAs substrates. By inspecting
long and carefully the di erences in peaks and valleys, in gaps and in the broadness
of the distribution of eigenvalues, that physically represented energy levels in the
solid described by Schrödinger’s equation in Section 1.1, insight gradually arose.
A similar track may be followed to understand real, complex networks, because at
the time of writing, “reading and understanding” the spectrum of a graph seems
beyond our ability. We hope that the mathematical properties of spectra, presented
here, may help in achieving this goal.
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