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1 Numbers and indices

Most of this chapter should be familiar, but it is important that you really

understand all of the material, which is largely a series of definitions.

1.1 Numbers

Real numbers are numbers that can be fitted into a place on the number

scale (Fig. 1.1). The other kinds of numbers are complex (or imaginary)

numbers, which cannot be fitted onto this scale, but lie above or below the

line. They are of the general form a + ib, where a and b are real numbers but

i is the square root of –1.

Real numbers can be divided into:

Integers: these are whole numbers, positive or negative, such as 7,

341, –56.

Rational numbers: these can be expressed precisely as the ratio of two

integers. All integers are rational (they can be written as n / 1) and

many non-integers are also rational, such as 3 / 4, 2.5 (= 5 / 2), –7.36

(= –736 / 100).

Irrational numbers: these cannot be precisely expressed as the ratio of

two integers; examples are π ( which is not exactly 22 / 7 nor any other

ratio of integers) and the square roots of all prime numbers (except 1).

Note that a number that has to be written as a recurring decimal is not

irrational: 0.333 333… is exactly 1 / 3; and 0.142 857 142 857 142 857… is

1 / 7. Also, all approximations are rational: if we give π the approximate

value of 3.142 this is 3142 / 1000, a rational number.
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1.2 Indices

A number written as na is defined as the number n raised to the

power a. If a is a positive integer (the simplest case) then na means

that n is multiplied a times by itself (n). Thus, 25 means 2 × 2 × 2 ×

2 × 2 = 32. In the expression na the number n is called the base, and a

is called the index (or power, or exponent). Neither n nor a need to be

integers.

Expressions that include more than one base cannot always be simplified:

nothing for instance can be done with an expression such as na × zb.

However, if the power is the same, wemay be able to rewrite, as for example,

na × za = (nz)a. Simplifications are possible in some very important cases

where only one base is present, as follows.

Multiplication

na � nb ¼ nðaþbÞ

e:g: 52�53¼ ð5� 5Þ � ð5� 5� 5Þ ¼ 55¼ 25� 125 ¼ 3125

Note carefully that this only works when the base is constant. Expressions

such as na× zb cannot be treated in this way.

Division

na=nb ¼ nða�bÞ

e:g: 24= 23 ¼ ð2� 2� 2� 2Þ=ð2� 2� 2Þ ¼ 21 ¼ 2

Again the base must be constant for this to work.

These two relationships are the foundation for the use of logarithms

(which are themselves indices of a chosen base number) as aids to multi-

plication and division.

0 1 2 3 4–1–2–3–4 ∞∞

Fig. 1.1 The scale of real numbers.
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Powers of indices

ðnaÞb ¼ na�b

e:g: ð32Þ3¼ 32� 32� 32¼ ð3� 3Þ � ð3� 3Þ � ð3� 3Þ ¼ 3
6¼ 729

Note carefully that expressions such as na + nb or na – nb cannot be

simplified (unless the actual numerical values of n, a and b are known).

e:g: 33 þ 31 ¼ ð3� 3� 3Þ þ 3 ¼ 27þ 3

¼ 30 and not 34 ðwhich equals 81Þ;
33 � 32 ¼ ð3� 3� 3Þ � ð3� 3Þ

¼ 27� 9 ¼ 18 and not 31 which equals 3ð Þ

Indices need not be only positive integers. They may also have zero value

(e.g. n0), or be negative (e.g. n–3) or fractional (e.g. n3/2). It is important to

understand what these different usages mean.

Any base raised to the power 0 has a value of 1:

n0 ¼ 1

ðna � na ¼ 1 ¼ nða�aÞ ¼ n0Þ

Any base raised to the power 1 has a value equal to the base itself:

n1 ¼ n

A base raised to the power 0.5 has a value equal to the square root of the

base:

n0:5 � n0:5 ¼ n1

A base raised to a negative power represents the reciprocal of the base

raised to that same (but positive) power:

n�a ¼ 1=na

The value of na/b is the bth root of na:

na=b ¼ bpna

So, for example, 25=4 ¼ 4
p
25 ¼ 21:25 and 3�3=2 ¼ 1= 2

p
33 ¼ 1=31:5. These

kinds of expression are most easily solved by using logarithms (or a pocket

calculator), as will be discussed later (see Chapter 5).
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Standard form

In order to write big (or small) numbers in a compact way we express them

as powers of 10, for example:

234 700 000 ¼ 2:347� 108; 0:000 000 625 ¼ 6:25� 10�7

While these numbers could just as well be written as 23.47 × 107 and

0.625 × 10–6, the standard form is to show a single integer (other than 0) to

the left of the decimal point.

Two things to be careful about:

(1) Going from standard form to a written-out number can be treacherous

and so take great care. 2 × 10–3 does not equal 0.02: rather, 2 × 10–3

= 0.002. This seems obvious yet this kind of error is common.

(2) You can add or subtract numbers in standard form only when all the

numbers are rewritten each at the same power of 10. At the end you can

convert back to standard form if necessary.

ð3� 103Þ þ ð8þ 102Þ � ð5� 101Þ ¼ ð300� 101Þ þ ð80� 101Þ
�ð5� 101Þ

¼ 375� 101

¼ 3:75� 103

Getting this right looks easy but is really quite troublesome. An example

on the Internet that shows how to do this kind of calculation is worked

out to the wrong answer! The safest thing is to write out all the numbers

fully (i.e. as multiplied by 100):

3000þ 800� 50 ¼ 3750 ¼ 3:75� 103

Multiplying (or dividing) numbers in standard form is relatively easy:

ð3� 103Þ � ð8� 102Þ � ð5� 101Þ ¼ 3� 8� 5� 10ð3þ2þ1Þ

¼ 120� 106

¼ 1:20� 108

ð8� 102Þ � ð5� 101Þ ¼ ð8� 5Þ � 10ð2�1Þ ¼ 1:6� 101

4 Numbers and indices
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2 A sense of proportion

If the Eiffel tower were now representing the world’s age, the skin of paint on the

pinnacle-knob at its summit would represent man’s share of that age, and anybody

would perceive that the skin was what the tower was built for. I reckon they would,

I dunno.

Mark Twain

The object of this chapter is to encourage you to think whether or not your

answer to a problem looks reasonable or ridiculous. In general, a reasonable

answer is likely to be a right answer. An answer that looks ridiculous might

also be right, but you should then be alert to check your calculation very

carefully. Of course, there will be times when you do not knowwhat tomake

of an answer – is it reasonable or is it not? The better your background of

knowledge and experience, the less often will this uncertainty happen.

2.1 A ridiculous answer that is wrong

Here is the problem: calculate what dry weight of bacteria will be present in

10 litres of medium in a fermenter after 10 h when at time zero there are 10

organismsml–1 and there is a lag of 1 h before exponential growth (doubling

time 20 min) begins. One organism has a dry weight of 1 × 10–12 g.

This is the answer from a candidate in an examination (examiner’s com-

ments in [ ]):

There are 9 hours of exponential growth

In 1 hour there are 3 doublings (td = 20 min)

Therefore there are 27 doublings in total

So that 10 × 227 organisms will be present per ml after 10 hours [perfect

so far]

= 2 × 1027 organisms per ml [spectacularly wrong; needs to read about

indices]
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≡ 2 × 1027 × 1 × 10–12 × 104 g dry weight in 10 litres [right if line above

were right]

= 2 × 1019 g

Now the candidate starts to worry. [The sadistic examiner begins to be

amused]

= 2 × 1016 kg

[The examiner is laughing]

= 2 × 1013 metric tonnes

This would not fit in the fermenter, writes the candidate as the last line

of answer.

[The examiner is rolling on the floor; marking scripts has its

compensations]

This answer is plainly ridiculous, but it is not clear whether the candidate

has realised there is a mistake in the calculation, or (more probably) whether

the examiner is being implicitly criticised for setting a problem that has a

stupid answer. As this latter circumstance never happens (well, hardly ever),

then there must be a mistake, as is pointed out above:

10 × 227 does not equal 2 × 1027. Rather, 10 × 227 = 10 × 1.342 × 108

The correct dry weight after 10 hours is 1.342 × 109 × 1 × 10–12 g ml–1 =

1.342 × 10–3 g ml–1 or 1.342mg ml–1 and so 13.42 g in 10 L

This answer does not appear impossible, and looks plausible if one has

some knowledge of the levels of growth that bacterial cultures typically

reach (1 to 10mg dry weight ml–1).

Simple mistakes in calculation are the commonest reason for getting

wrong answers. Always think about the likely size of a result, and be sure to

get ratios the right way round. For example, if you are finding how much of

an anhydrous compound to use in a solution, when the recipe calls for a

hydrated salt, then the required amount will be smaller than the recipe says.

Remembering that where x is a positive real number:

multiplying x by a positive number less than 1 will lead to a number

smaller than x

multiplying x by a number bigger than 1will lead to a number bigger than x

dividing x by a positive number less than 1 will lead to a number bigger

than x

dividing x by a number bigger than 1 will lead to a number smaller than x

should help you to express proportions the correct way round.
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2.2 ‘Back of envelope’ calculations

One of the most useful things you may learn from this book is how to get an

approximate idea of the answer to a calculation by doing quite drastic round-

ing up and rounding down of the numbers in an expression. For example:

2875 × 7681 can be rounded to 3000 × 7500 which is 22 500 000

(If one number is rounded up, try to round down another.)

The precise answer is 22 082 875, and so the approximation is only off

by 1.9%.

Here is another: (3478 × 29 641) / (391 × 475) can be written as:

Rounding the numbers allows drastic cancelling, to give an answer only

5.4% away from the precise result, which is 555.1.

Even if you can do this more quickly with a calculator, you can also easily

make mistakes in pressing wrong keys, and for many people disbelieving

what the calculator says is difficult. The last example (below) is none too

simple with a calculator, and back-of-envelope work is highly desirable to

get an idea of what to expect as the answer.

3478 × 29 641

391 × 475 400 × 500

3500 × 30 000

525

11
400 × 500

175
700

3500 × 30 000

(7836 – 484) × 9741 (8000 – 500) × 10 000

(2743 × 37) + 960 (3000 × 40) + 1000

7500 × 10 0007500 × 10 000

120 000 + 1000 120 000

625

2500
7500 × 10 000

120 000
4
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The precise answer is 699.0, which means that this time the rough answer

is not so close; the error is 10.6%, but even so this still gives a good idea of

what to expect as the correct result after accurate calculation.

You probably think that all these examples were carefully devised, with

the roundings planned ahead to get a good answer. They were in fact done

with no forethought of that kind, and are genuine, honestly. Doing back-of-

envelope calculations without an envelope (i.e. in your head) is a talent that

can be shown off to the uninitiated (impress your friends!), but be very

careful not to lose track of powers of 10. The envelope is safer.
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3 Graphs

‘and what is the use of a book,’ thought Alice, ‘without pictures or conversation?’

Lewis Carroll

Why draw a graph? There are many reasons, but the fundamental one is

that the human brain understands a picture much more easily than it does a

table of numbers.

Many data-handling questions require a graph to be drawn as part of the

solution. It is unlikely that under examination conditions a work of art will

be produced, nor would one be expected. However, some marks are given

for a graph that is correct (the points are plotted in the right places!) and

which obeys the conventional rules.

As well as making the drawing, you will probably have to use the graph to

read off some values, such as a gradient or an intercept or to measure test

samples from an assay. Doing these interpretations will be considered after

discussing how to produce a graph.

3.1 Drawing graphs

The graph shown in Fig. 3.1 illustrates a number of features.

There are several things to note. The horizontal scale (x axis, or abscissa)

is given to the variable that is the more directly under the control of the

investigator, and the variable that is measured for various values of x is

plotted on the vertical scale (y axis, or ordinate). In Fig. 3.1, the times at

which readings of the extinction are made are chosen by the experimenter,

and so go on the x axis, while the extinctions themselves are less under

control and follow from the selected times, and therefore go on the y axis.

Do not make the graph too small; aim to use as much of the area of the

sheet of graph paper as possible. The scales of the two axes must therefore be

chosen with care. Neither scale should extend far beyond the plotted points,
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and the points themselves must always lie within the scales. Straight-line

graphs are best plotted with scales devised in such a way that the line makes

an angle of about 45° with the x axis, so that x or y values can be plotted or

read from the graph with similar precision. (When several lines are plotted

on one graph it is unlikely that this rule can be obeyed for all the lines, but at

least one of the lines ought to be plotted to best advantage.)

The origin of a graph does not necessarily have to be shown. Frequently

a better graph can be made by using scales of limited ranges. Compare

Fig. 3.2a and b.

A problem sometimes occurs in the laboratory with real experimental

results: ‘Must a straight line be drawn to go through the origin even though

doing this gives a line of poorer fit with the data?’Unfortunately, the answer

is sometimes ‘Yes’ and sometimes ‘No’ depending on all kinds of things.

Fortunately the made-up results given in a data-handling question will not

be equivocal (unless you are specially warned!) and will not lead to points on

graphs that leave much doubt about where the curve ought to go, that is,

provided the points are plotted in the right places. Real-life problems may

not be so amenable!

Frequently points are not plotted correctly. People often miscount

squares on graph paper and hence make scales with irregular spacing of

the scale divisions. Another common error is to choose a logarithmic scale

when a linear one ought to have been used. If you have numbers spread

between 10 and 10 000 to plot (e.g. organisms per ml), and you label the
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Fig. 3.1 Reduction of NAD+ by lactate dehydrogenase. At time zero, enzyme,

substrate and cofactor were mixed and extinctions at 340 nm (due to

formation of NADH) were measured at 30 °C at intervals. Readings were

continued for 66 min from the time of mixing, and the measured extinctions

fell in the range 0 to 0.32.
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