MOLECULAR MACHINES IN BIOLOGY

THE concept of molecular machines in biology has transformed the medical field in a profound way. Many essential processes that occur in the cell, including transcription, translation, protein folding, and protein degradation, are all carried out by molecular machines. This volume focuses on important molecular machines whose architecture is known and whose functional principles have been established by tools of biophysical imaging (X-ray crystallography and cryo-electron microscopy) and fluorescence probing (single-molecule FRET). This edited volume includes contributions from prominent scientists and researchers who understand and have explored the structure and functions of these machines. This book is essential for students and professionals in the biological sciences and the medical field who want to learn more about molecular machines.

Dr. Joachim Frank is a Howard Hughes Medical Institute Investigator, Professor of Biochemistry and Molecular Biophysics, and Professor of Biological Sciences at Columbia University. He is a member of the National Academy of Sciences and a fellow of the American Academy of Arts and Sciences. Dr. Frank has received many awards for his research, including, with David DeRosier, the Elizabeth Robert Cole Award of the Biophysics Society. He has published more than 200 peer-reviewed articles, written numerous book chapters, and authored or edited five books, including Electron Crystallography of Biological Macromolecules, co-authored with Robert M. Glaeser, Kenneth Downing, David DeRosier, and Wah Chiu (2007), Three-Dimensional Electron Microscopy of Macromolecular Assemblies (2006), and Electron Tomography, Second Edition (2006).
MOLECULAR MACHINES IN BIOLOGY

Workshop of the Cell

Edited by

Joachim Frank

Columbia University
Contents

LIST OF CONTRIBUTORS vii
LIST OF FIGURES AND TABLES ix
PREFACE xiii

INTRODUCTION 1
Joachim Frank

Chap. 1 SINGLE-MOLECULE FRET: TECHNIQUE AND APPLICATIONS TO THE STUDIES OF MOLECULAR MACHINES 4
Xinghua Shi and Taekjip Ha

Chap. 2 VISUALIZATION OF MOLECULAR MACHINES BY CRYO-ELECTRON MICROSCOPY 20
Joachim Frank

Chap. 3 STATISTICAL MECHANICAL TREATMENT OF MOLECULAR MACHINES 38
Debashish Chowdhury

Chap. 4 EXPLORING THE FUNCTIONAL LANDSCAPE OF BIOMOLECULAR MACHINES VIA ELASTIC NETWORK NORMAL MODE ANALYSIS 59
Karunesh Arora and Charles L. Brooks III

Chap. 5 STRUCTURE, FUNCTION, AND EVOLUTION OF ARCHAEO-EUKARYOTIC RNA POLYMERASES – GATEKEEPERS OF THE GENOME 78
Finn Werner and Dina Grohmann

Chap. 6 SINGLE-MOLECULE FLUORESCENCE RESONANCE ENERGY TRANSFER

INVESTIGATIONS OF RIBOSOME-CATALYZED PROTEIN SYNTHESIS 93
Daniel D. MacDougall, Jingyi Fei, and Ruben L. Gonzalez, Jr.

Chap. 7 STRUCTURE AND DYNAMICS OF THE RIBOSOME AS REVEALED BY CRYO-ELECTRON MICROSCOPY 117
Xabier Agirrezabala and Mikel Valle

Chap. 8 VIEWING THE MECHANISMS OF TRANSLATION THROUGH THE COMPUTATIONAL MICROSCOPE 142
James Gumbart, Eduard Schreiner, Leonardo G. Trabuco, Kwok-Yan Chan, and Klaus Schulten

Chap. 9 THE RIBOSOME AS A BROWNIAN RATCHET MACHINE 158
Alexander S. Spirin and Alexei V. Finkelstein

Chap. 10 THE GROEL/GROES CHAPERONIN MACHINE 191
Arthur L. Horwich and Helen R. Saibil

Chap. 11 ATP SYNTHASE – A PARADIGMATIC MOLECULAR MACHINE 208
Thomas Meier, José D. Faraldo-Gómez, and Michael Börsch

Chap. 12 ATP-DEPENDENT PROTEASES: THE CELL’S DEGRADATION MACHINES 239
Sucharita Bhattacharyya, Shameika R. Wilmington, and Andreas Matouschek

INDEX 261
Contributors

Xabier Agirrezaabala
Structural Biology Unit
CIC bioGUNE
Basque Country
Spain

Karunesh Arora
Department of Chemistry and Biophysics Program
University of Michigan at Ann Arbor
Ann Arbor, MI

Sucharita Bhattacharyya
Northwestern University
Department of Molecular Biosciences
Matouschek Lab
Evanston, IL

Michael Börsch
Jena University Hospital
Friedrich Schiller University
Jena
Germany

Charles L. Brooks III
Department of Chemistry and Biophysics Program
University of Michigan at Ann Arbor
Ann Arbor, MI

Kwok-Yan Chan
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL

Debashish Chowdhury
Department of Physics
Indian Institute of Technology
Kanpur
India

José Faraldo-Gómez
Department of Structural Biology
Max-Planck Institute of Biophysics
Frankfurt
Germany

Jingyi Fei
Department of Chemistry
Columbia University
New York, NY

Alexei V. Finkelstein
Institute of Protein Research
Russian Academy of Sciences
Pushchino, Moscow Region
Russia

Joachim Frank
Howard Hughes Medical Institute
Department of Biochemistry and Molecular Biophysics, and Department of Biological Sciences
Columbia University
New York, NY

Ruben L. Gonzalez, Jr.
Department of Chemistry
Columbia University
New York, NY

Dina Grohmann
UCL Institute for Structural and Molecular Biology
Division of Biosciences
London
United Kingdom
CONTRIBUTORS

James Gumbart
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL

Taekjip Ha
Department of Physics and Institute for Genomic Biology
Howard Hughes Medical Institute
University of Illinois at Urbana-Champaign
Urbana, IL

Arthur L. Horwich
Department of Genetics and HHMI
Yale School of Medicine
New Haven, CT

Daniel D. MacDougall
Department of Chemistry
Columbia University
New York, NY

Andreas Matouschek
Northwestern University
Department of Molecular Biosciences
Evanston, IL

Thomas Meier
Department of Structural Biology
Max-Planck Institute of Biophysics
Frankfurt
Germany

Helen R. Saibil
Department of Crystallography
Birkbeck College London
London
United Kingdom

Eduard Schreiner
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL

Klaus Schulten
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL

Xinghua Shi
Department of Physics and Institute for Genomic Biology
Howard Hughes Medical Institute
University of Illinois at Urbana-Champaign
Urbana, IL

Alexander S. Spirin
Institute of Protein Research
Russian Academy of Sciences
Pushchino, Moscow Region
Russia

Leonardo G. Trabuco
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL

Mikel Valle
Structural Biology Unit
CIC bioGUNE
Bask Country
Spain

Finn Werner
UCL Institute for Structural and Molecular Biology
Division of Biosciences
London
United Kingdom

Shameika R. Wilmington
Northwestern University
Department of Molecular Biosciences
Matouschek Lab
Evanston, IL
Figures and Tables

FIGURES

1.1 Single-molecule FRET techniques
1.2 Advanced molecule immobilization and detection schemes
1.3 A single-molecule FRET study of E. coli Rep helicase
1.4 Blockade-induced repetitive shuttling of Rep helicase
1.5 Stepwise unwinding of HCV NS3 helicase
1.6 Initial transcription by RNA polymerase
1.7 Study of DNA replication coordination by the bacteriophage T7 replisome
2.1 Data collection for molecules in single-particle form
2.2 Preparation of the specimen: Schematic of a freeze-plunger
2.3 Raw data collected on film
2.4 Principle of the random-conical data collection and reconstruction
2.5 Principle of the angular reconstruction technique
2.6 Reference-based angle assignment and angular refinement
2.7 Angle assignment in practice, as illustrated by a ribosome project
2.8 Schematic diagram of the free-energy landscape for the elongation cycle of translation
2.9 Maximum likelihood (ML3D) classification of single-particle projections
2.10 Flowchart of classification based on bootstrap reconstructions
2.11 Example for classification of a heterogeneous data set using maximum likelihood classification (ML3D)
3.1 The hierarchy of the levels of theoretical description in mechanics
3.2 The hierarchy of the levels of theoretical description of chemical reactions
3.3 The steps in a cycle of a chemo-chemical machine where absence of any direct transition between E_A and $E'\cdot C$ ensures tight mechano-chemical coupling
3.4 The steps in the cycle of a chemo-chemical machine obtained from that in Figure 3.3 by adding a direct transition between E_A and $E'\cdot C$
3.5 The three cyclic pathways, which are possible in the kinetic scheme shown in Figure 3.4, are shown separately in (a), (b), and (c)
3.6 A typical cyclic pathway followed by an ATPase
3.7 A schematic representation of the generic scenario of hydrolysis of ATP by a motor enzyme
3.8 Cross-sections of the free-energy landscape in the mechano-chemical state space of a molecular motor
3.9 A schematic representation of discrete states in the mechano-chemical state space and the nature of the possible typical transitions
3.10 The mechano-chemical cycle of the molecular motor in the Fisher-Kolomeisky model for $m = 4$
3.11 Various modes of operation of a cytoskeletal molecular motor in the 2D plane spanned by the two generalized forces
<table>
<thead>
<tr>
<th>FIGURES AND TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12 Schematic description of the NOSC model of a single-headed kinesin motor that follows a Brownian ratchet mechanism</td>
</tr>
<tr>
<td>3.13 Pictorial depiction of the main steps in the mechano-chemical cycle assumed in the Sharma-Chowdhury model of a single ribosome</td>
</tr>
<tr>
<td>4.1 Adenylate kinase in open and closed conformations</td>
</tr>
<tr>
<td>4.2 Functional motions obtained from normal mode analysis of AdK</td>
</tr>
<tr>
<td>4.3 Cumulative contribution of NMA modes to the structural change between the open and closed forms of AdK</td>
</tr>
<tr>
<td>4.4 Atomic motions in AdK arising from the displacement along the lowest-frequency mode</td>
</tr>
<tr>
<td>4.5 Superimposed one-dimensional free-energy profile of the ligand-unbound pathway and that of the ligand-bound pathway of AdK</td>
</tr>
<tr>
<td>4.6 The structural features of hexameric helicase</td>
</tr>
<tr>
<td>4.7 Functional motions of the hexameric helicase predicted by NMA</td>
</tr>
<tr>
<td>4.8 A front view of the 70S ribosome architecture</td>
</tr>
<tr>
<td>4.9 Atomic motion in the ribosome arising from displacements along mode 3</td>
</tr>
<tr>
<td>4.10 Local rearrangements within the ribosome as a result of displacement along the elastic normal modes</td>
</tr>
<tr>
<td>4.11 Structural rearrangements of the 70S ribosome obtained from elastic network NMA</td>
</tr>
<tr>
<td>4.12 Asymmetric units modeling the prohead II and head II HK97 capsid structures</td>
</tr>
<tr>
<td>4.13 The cumulative summation of the square of overlap between normal modes and the vector related to the conformational change for the two known states of the virus particle HK97</td>
</tr>
<tr>
<td>4.14 Amplitude and direction of motion for the first and second non-degenerate normal modes of HK97</td>
</tr>
<tr>
<td>5.1 Information-processing circuitry in biology</td>
</tr>
<tr>
<td>5.2 The universally conserved two-metal catalytic mechanism of phosphodiester bond catalysis</td>
</tr>
<tr>
<td>5.3 The evolution of proteinaceous RNAP from a ribozyme ancestor</td>
</tr>
<tr>
<td>5.4 RNAP structure in the three domains of life</td>
</tr>
<tr>
<td>5.5 Multi-subunit RNAPs share a common structural framework</td>
</tr>
<tr>
<td>5.6 Archaeal and Eukaryotic RNAPs contain a complement of subunits that are not present in the Bacterial enzyme</td>
</tr>
<tr>
<td>5.7 Molecular mechanisms of Archaeal RNAP during the transcription cycle</td>
</tr>
<tr>
<td>5.8 Molecular mechanisms of TFIIIB during transcription initiation</td>
</tr>
<tr>
<td>5.9 Rpo4/7 (F/E) modulates RNAP activities during the elongation and termination phase of transcription by two mechanisms</td>
</tr>
<tr>
<td>5.10 The transcription elongation factor Spt4/5 stimulates RNAP processivity</td>
</tr>
<tr>
<td>5.11 Rescue of stalled transcription elongation complexes</td>
</tr>
<tr>
<td>5.12 Archael and Eukaryotic RNAPs contain a complement of subunits that are not present in the Bacterial enzyme</td>
</tr>
<tr>
<td>5.13 The structural features of hexameric helicase</td>
</tr>
<tr>
<td>5.14 Functional motions of the hexameric helicase predicted by NMA</td>
</tr>
<tr>
<td>5.15 Stabilization of the classical state is strongly correlated with inhibition of translation by decoding site-binding aminoglycosides</td>
</tr>
<tr>
<td>5.16 EF-G(GTP)-catalyzed translocation rectifies inter-subunit rotation dynamics and converts the ribosome into the non-rotated state</td>
</tr>
<tr>
<td>5.17 Real-time measurement of L1 stalk-tRNA interaction during a full elongation cycle</td>
</tr>
<tr>
<td>5.18 L1 stalk conformational dynamics within POST complexes</td>
</tr>
<tr>
<td>5.19 Real-time measurement of L1 stalk-tRNA interaction during a full elongation cycle</td>
</tr>
<tr>
<td>5.20 L1 stalk conformational dynamics within POST complexes</td>
</tr>
<tr>
<td>5.21 Real-time measurement of L1 stalk-tRNA interaction during a full elongation cycle</td>
</tr>
<tr>
<td>5.22 L1 stalk conformational dynamics within POST complexes</td>
</tr>
</tbody>
</table>
6.16 Ribosomal conformational dynamics regulated by release factors during translation termination

6.17 Ribosome recycling factor fine-tunes the GS1 ⇔ GS2 equilibrium within the post-termination complex

7.1 The architecture of the ribosome

7.2 Overview of the ribosomal structure and dynamics

7.3 The process of initiation

7.4 The 3OS-IC complex

7.5 Incorporation of the ternary complex into the ribosome

7.6 Cryo-EM of ternary complexes

7.7 tRNA translocation by EF-G

7.8 The conformational changes observed in EF-G

7.9 Model of termination process

7.10 Comparison between cryo-EM and X-ray structures of the class I release factors

7.11 Interaction between RF3 and the ribosome

7.12 Ribosome recycling

7.13 The mechanism of RRF actions during recycling

7.14 The hybrid tRNA configuration

7.15 The Eukaryotic ribosome

7.16 IRES-mediated initiation of protein synthesis

7.17 The passage gate of the P/E tRNA

7.18 Nascent polypeptide chain–mediated translational stalling

8.1 Ribosome-induced GTPase activation of EF-Tu

8.2 A/T tRNA structure as seen in cryo-EM and X-ray crystallography

8.3 Schematic and crystal structure of a closed translocon, SecYE

8.4 Ribosome-translocon complexes

8.5 Structurally characterized translocon-partner complexes

8.6 Cryo-EM single-particle reconstruction of an E. coli TnaC:70S complex

8.7 Mechanism of translational stalling

8.8 Structure of TnaC inside the exit tunnel

8.9 Recognition of critical TnaC residues by the ribosomal exit tunnel

9.1 Contours of the two ribosomal subunits viewed from their contacting (facing each other) surfaces

9.2 Folding of Bacterial (E. coli) rRNAs into secondary and tertiary structures viewed from the contacting surfaces of the ribosomal subunits, 3OS and 5OS

9.3 Functional sites of the ribosomal subunits

9.4 The translating ribosome as a conveying machine

9.5 The ratchet-and-pawl mechanism

9.6 Hypothetical scheme of the working cycle of a scanning 43S ribosomal complex

9.7 Factor-free (non-enzymatic) elongation cycle

9.8 Factor-free (spontaneous) translocation via an intermediate “rotated” state

9.9 Schematic representation of the shuttle cycle of the elongation factor EF-Tu

9.10 EF-Tu-promoted binding of aminocyl-tRNA with the translating ribosome

9.11 EF-G-promoted translocation in the translating ribosome

9.12 Schematic representation of the change in the free-energy profile for the system (peptidyl-tRNA + deacylated tRNA) by domain IV of EF-G

10.1 Crystallographic models of GroEL, GroES, and GroEL/GroES complex

10.2 Effect of cooperative ATP binding in the seven subunits of one of the two GroEL rings

10.3 Stereochemistry of interaction of the ATP transition-state analog, ADP-AIF₃, with the equatorial nucleotide pocket of a GroES-bound GroEL ring

10.4 Inter-ring contacts through two sites at the base of each equatorial domain

10.5 Structure of the polypeptide binding apical surface of a GroEL subunit, as viewed from the inside of a GroEL ring

10.6 GroEL/GroES reaction cycle

10.7 Progression of a GroEL ring, as deduced from kinetic and EM studies, during the ATP/GroES reaction cycle

10.8 Actions of αβ ring ATP hydrolysis on the trans ring

11.1 Chemical structure of ATP and the hydrolysis of ATP (adenosine triphosphate) to ADP (adenosine diphosphate) and Pᵢ (phosphate)

11.2 Discovery of lollipop-like shape of ATP synthase

11.3 Schematic structural organization of the molecular machine F₁Fₒ-ATP synthase

11.4 The binding change mechanism of the F₁Fₒ-ATP synthase

11.5 Structure of the F₁-ATPase from bovine heart mitochondria
xii FIGURES AND TABLES

11.6 A first glimpse on the rotor-stator interface of the ATP synthase by electron microscopy
11.7 The outer stalk of the ATP synthase
11.8 Atomic force microscopy of rotor rings
11.9 Rotor ring structures solved at high resolution by X-ray crystallography
11.10 Structural details of the ion binding sites of Na\(^+\) and H\(^+\) dependent ATP synthases
11.11 Observing ATP-driven subunit rotation in single F\(_1\) and F\(_{1}\)F\(_{0}\)-ATP synthases
11.12 Observing subunit rotation in single F\(_{1}\)F\(_{0}\)-ATP synthases during ion-driven ATP synthesis, and mechanically enforced in F\(_1\) parts
11.13 Torque generation in the F\(_{0}\) complex
11.14 Microscopic model of proton translocation and coupled rotation in the F\(_{0}\) complex from S. platensis
12.1 Ribbon diagram of the HslUV structure
12.2 Crystal structure of the PA-26 proteasome complex S. Pombe
12.3 Structure of the 26S proteasome from S. Pombe
12.4 Crystal structure of a representative AAA\(^{+}\) domain from NSF
12.5 The proteolytic particle is gated in ATP-dependent proteases
12.6 The 26S proteasome degradation cycle
12.7 Substrate targeting to ATP-dependent proteases in Eukaryotes, Archaea, and Bacteria
12.8 Substrate recognition and proteolysis of N-end rule substrates
12.9 Hypothetical mechanism of translocation
12.10 Sequential degradation of a multi-domain protein by the 26S proteasome

TABLES

3.1 Predicted transport properties in the low-density limit for four different ATP densities
7.1 Ribosomal factors in protein synthesis
11.1 Subunit composition, stoichiometry, and nomenclature of F\(_{1}\)F\(_{0}\)-ATP synthases found in Bacteria, mitochondria, and chloroplasts
11.2 Subunit stoichiometries of rotor rings from ATPases/synthases
Preface

The concept of this book goes back to the Center for Molecular Machines, which I started together with similarly minded colleagues – Nilesh Banavali, April Burch, Steve Hanes, Joachim Jaeger, and Janice Pata, among others – at the Wadsworth Center in Albany back in 2005. The most visible manifestation of the Center for Molecular Machines was a monthly seminar series, which we called Molecular Machine Shop. The idea was to highlight some of the complicated structures at work in the cell, which were coming increasingly into view mainly through the efforts of X-ray crystallography and cryo-electron microscopy, and to bring out common features and general principles underlying these biological nanomachines. The seminars were meant to encourage interdisciplinary discourse as it was becoming increasingly clear that no single technique alone could unravel the mystery of how such machines work.

In June 2007, we organized a one-day minisymposium in Albany, which brought together experts studying molecular machines with the tools of X-ray crystallography, cryo-EM, single-molecule FRET, and molecular dynamics. In the wake of the event, Allan Ross, then senior editor at Cambridge University Press, approached me to ask if I would be interested in editing a volume on the theme. Some of the speakers of the minisymposium were receptive to the idea, and by asking other scholars working in the field I was lucky in the end to be able to assemble a team of the highest caliber.

I am grateful to all contributors for the dedicated work they have put in, and for their cooperation and patience over a considerable length of time. I would like to thank Joy Mizan, who took over the project after Alan Ross’ departure from Cambridge University Press, for her dedicated work to ensure a glitch-free high-quality production, and Melissa Thomas in my lab for creating a beautiful symbolic cell as cover art, starting with a simple idea – M. C. Escher’s reflecting glass ball – and with a list of deposition codes of density maps selected from the EM Data Bank.

The cover, I hope, will draw in readers with the promise of an experience that goes beyond conveying scientific facts: on the molecular level, touched by the tools of molecular graphics, life appears as a beautiful dance of colorful structures to scientists and nonscientists alike.

Joachim Frank
New York