DIFFERENTIAL EQUATIONS FOR ENGINEERS

This book presents a systematic and comprehensive introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. Detailed step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. Such a detailed, step-by-step approach, especially when applied to practical engineering problems, helps the readers to develop problem-solving skills.

This book is suitable for use not only as a textbook on ordinary differential equations for undergraduate students in an engineering program but also as a guide to self-study. It can also be used as a reference after students have completed learning the subject.

Wei-Chau Xie is a Professor in the Department of Civil and Environment Engineering and the Department of Applied Mathematics at the University of Waterloo. He is the author of *Dynamic Stability of Structures* and has published numerous journal articles on dynamic stability, structural dynamics and random vibration, nonlinear dynamics and stochastic mechanics, reliability and safety analysis of engineering systems, and seismic analysis and design of engineering structures. He has been teaching differential equations to engineering students for almost twenty years. He received the Teaching Excellence Award in 2001 in recognition of his exemplary record of outstanding teaching, concern for students, and commitment to the development and enrichment of engineering education at Waterloo. He is the recipient of the Distinguished Teacher Award in 2007, which is the highest formal recognition given by the University of Waterloo for a superior record of continued excellence in teaching.
Differential Equations for Engineers

Wei-Chau Xie

University of Waterloo
TO

My Family
Contents

Preface ... XIII

1 Introduction .. 1
 1.1 Motivating Examples 1
 1.2 General Concepts and Definitions 6

2 First-Order and Simple Higher-Order Differential Equations 16
 2.1 The Method of Separation of Variables 16
 2.2 Method of Transformation of Variables 20
 2.2.1 Homogeneous Equations 20
 2.2.2 Special Transformations 25
 2.3 Exact Differential Equations and Integrating Factors 31
 2.3.1 Exact Differential Equations 32
 2.3.2 Integrating Factors 39
 2.3.3 Method of Inspection 45
 2.3.4 Integrating Factors by Groups 48
 2.4 Linear First-Order Equations 55
 2.4.1 Linear First-Order Equations 55
 2.4.2 Bernoulli Differential Equations 58
 2.5 Equations Solvable for the Independent or Dependent Variable ... 61
 2.6 Simple Higher-Order Differential Equations 68
 2.6.1 Equations Immediately Integrable 68
 2.6.2 The Dependent Variable Absent 70
 2.6.3 The Independent Variable Absent 72
 2.7 Summary ... 74

problems ... 78

3 Applications of First-Order and Simple Higher-Order Differential Equations 87
 3.1 Heating and Cooling 87
 3.2 Motion of a Particle in a Resisting Medium 91
 3.3 Hanging Cables 97

{str:www.cambridge.org}
Contents

3.3.1 The Suspension Bridge 97
3.3.2 Cable under Self-Weight 102
3.4 Electric Circuits 108
3.5 Natural Purification in a Stream 114
3.6 Various Application Problems 120
Problems 130

4 Linear Differential Equations 140
4.1 General Linear Ordinary Differential Equations 140
4.2 Complementary Solutions 143
4.2.1 Characteristic Equation Having Real Distinct Roots 143
4.2.2 Characteristic Equation Having Complex Roots 147
4.2.3 Characteristic Equation Having Repeated Roots 151
4.3 Particular Solutions 153
4.3.1 Method of Undetermined Coefficients 153
4.3.2 Method of Operators 162
4.3.3 Method of Variation of Parameters 173
4.4 Euler Differential Equations 178
4.5 Summary 180
Problems 183

5 Applications of Linear Differential Equations 188
5.1 Vibration of a Single Degree-of-Freedom System 188
5.1.1 Formulation—Equation of Motion 188
5.1.2 Response of a Single Degree-of-Freedom System 193
5.1.2.1 Free Vibration—Complementary Solution 193
5.1.2.2 Forced Vibration—Particular Solution 200
5.2 Electric Circuits 209
5.3 Vibration of a Vehicle Passing a Speed Bump 213
5.4 Beam-Columns 218
5.5 Various Application Problems 223
Problems 232

6 The Laplace Transform and Its Applications 244
6.1 The Laplace Transform 244
6.2 The Heaviside Step Function
6.3 Impulse Functions and the Dirac Delta Function
6.4 The Inverse Laplace Transform
6.5 Solving Differential Equations Using the Laplace Transform
6.6 Applications of the Laplace Transform
 6.6.1 Response of a Single Degree-of-Freedom System
 6.6.2 Other Applications
 6.6.3 Beams on Elastic Foundation
6.7 Summary
Problems

7 Systems of Linear Differential Equations

7.1 Introduction
7.2 The Method of Operator
 7.2.1 Complementary Solutions
 7.2.2 Particular Solutions
7.3 The Method of Laplace Transform
7.4 The Matrix Method
 7.4.1 Complementary Solutions
 7.4.2 Particular Solutions
 7.4.3 Response of Multiple Degrees-of-Freedom Systems
7.5 Summary
 7.5.1 The Method of Operator
 7.5.2 The Method of Laplace Transform
 7.5.3 The Matrix Method
Problems

8 Applications of Systems of Linear Differential Equations

8.1 Mathematical Modeling of Mechanical Vibrations
8.2 Vibration Absorbers or Tuned Mass Dampers
8.3 An Electric Circuit
8.4 Vibration of a Two-Story Shear Building
 8.4.1 Free Vibration—Complementary Solutions
 8.4.2 Forced Vibration—General Solutions
Problems
Series Solutions of Differential Equations

9.1 Review of Power Series
9.2 Series Solution about an Ordinary Point
9.3 Series Solution about a Regular Singular Point
 9.3.1 Bessel's Equation and Its Applications
 9.3.1.1 Solutions of Bessel's Equation
 9.3.2 Applications of Bessel's Equation
9.4 Summary
Problems

Numerical Solutions of Differential Equations

10.1 Numerical Solutions of First-Order Initial Value Problems
 10.1.1 The Euler Method or Constant Slope Method
 10.1.2 Error Analysis
 10.1.3 The Backward Euler Method
 10.1.4 Improved Euler Method—Average Slope Method
 10.1.5 The Runge-Kutta Methods
10.2 Numerical Solutions of Systems of Differential Equations
10.3 Stiff Differential Equations
10.4 Summary
Problems

Partial Differential Equations

11.1 Simple Partial Differential Equations
11.2 Method of Separation of Variables
11.3 Application—Flexural Motion of Beams
 11.3.1 Formulation—Equation of Motion
 11.3.2 Free Vibration
 11.3.3 Forced Vibration
11.4 Application—Heat Conduction
 11.4.1 Formulation—Heat Equation
 11.4.2 Two-Dimensional Steady-State Heat Conduction
 11.4.3 One-Dimensional Transient Heat Conduction
 11.4.4 One-Dimensional Transient Heat Conduction on a Semi-Infinite Interval
11.4.5 Three-Dimensional Steady-State Heat Conduction 488
11.5 Summary 492
Problems 493

12 Solving Ordinary Differential Equations Using Maple 498
12.1 Closed-Form Solutions of Differential Equations 499
12.1.1 Simple Ordinary Differential Equations 499
12.1.2 Linear Ordinary Differential Equations 506
12.1.3 The Laplace Transform 507
12.1.4 Systems of Ordinary Differential Equations 509
12.2 Series Solutions of Differential Equations 512
12.3 Numerical Solutions of Differential Equations 517
Problems 526

Appendix A Tables of Mathematical Formulas 531
A.1 Table of Trigonometric Identities 531
A.2 Table of Derivatives 533
A.3 Table of Integrals 534
A.4 Table of Laplace Transforms 537
A.5 Table of Inverse Laplace Transforms 539

Index 542
Preface

Background

Differential equations have wide applications in various engineering and science disciplines. In general, modeling of the variation of a physical quantity, such as temperature, pressure, displacement, velocity, stress, strain, current, voltage, or concentration of a pollutant, with the change of time or location, or both would result in differential equations. Similarly, studying the variation of some physical quantities on other physical quantities would also lead to differential equations. In fact, many engineering subjects, such as mechanical vibration or structural dynamics, heat transfer, or theory of electric circuits, are founded on the theory of differential equations. It is practically important for engineers to be able to model physical problems using mathematical equations, and then solve these equations so that the behavior of the systems concerned can be studied.

I have been teaching differential equations to engineering students for the past two decades. Most, if not all, of the textbooks are written by mathematicians with little engineering background. Based on my experience and feedback from students, the following lists some of the gaps frequently seen in current textbooks:

- A major focus is put on explaining mathematical concepts

 For engineers, the purpose of learning the theory of differential equations is to be able to solve practical problems where differential equations are used. For engineering students, it is more important to know the applications and techniques for solving application problems than to delve into the nuances of mathematical concepts and theorems. Knowing the appropriate applications can motivate them to study the mathematical concepts and techniques. However, it is much more challenging to model an application problem using physical principles and then solve the resulting differential equations than it is to merely carry out mathematical exercises.

- Insufficient emphasis is placed on the step-by-step problem solving techniques

 Engineering students do not usually have the same mathematical background and interest as students who major in mathematics. Mathematicians are more interested if: (1) there are solutions to a differential equation or a system of differential equations; (2) the solutions are unique under a certain set of conditions; and (3) the differential equations can be solved. On the other hand,
engineers are more interested in mathematical modeling of a practical problem and actually solving the equations to find the solutions using the easiest possible method. Hence, a detailed step-by-step approach, especially applied to practical engineering problems, helps students to develop problem solving skills.

- Presentations are usually formula-driven with little variation in visual design
 It is very difficult to attract students to read boring formulas without variation of presentation. Readers often miss the points of importance.

Objectives

This book addresses the needs of engineering students and aims to achieve the following objectives:

- To motivate students on the relevance of differential equations in engineering through their applications in various engineering disciplines. Studies of various types of differential equations are motivated by engineering applications; theory and techniques for solving differential equations are then applied to solve practical engineering problems.

- To have a balance between theory and applications. This book could be used as a reference after students have completed learning the subject. As a reference, it has to be reasonably comprehensive and complete. Detailed step-by-step analysis is presented to model the engineering problems using differential equations and to solve the differential equations.

- To present the mathematical concepts and various techniques in a clear, logical and concise manner. Various visual features, such as side-notes (preceded by the \(\Rightarrow \) symbol), different fonts and shades, are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. This book is not only suitable as a textbook for classroom use but also is easy for self-study. As a textbook, it has to be easy to understand. For self-study, the presentation is detailed with all necessary steps and useful formulas given as side-notes.

Scope

This book is primarily for engineering students and practitioners as the main audience. It is suitable as a textbook on ordinary differential equations for undergraduate students in an engineering program. Such a course is usually offered in the second year after students have taken calculus and linear algebra in the first year. Although it is assumed that students have a working knowledge of calculus and linear algebra, some important concepts and results are reviewed when they are first used so as to refresh their memory.
Chapter 1 first presents some motivating examples, which will be studied in detail later in the book, to illustrate how differential equations arise in engineering applications. Some basic general concepts of differential equations are then introduced.

In Chapter 2, various techniques for solving first-order and simple higher-order ordinary differential equations are presented. These methods are then applied in Chapter 3 to study various application problems involving first-order and simple higher-order differential equations.

Chapter 4 studies linear ordinary differential equations. Complementary solutions are obtained through the characteristic equations and characteristic numbers. Particular solutions are obtained using the method of undetermined coefficients, the operator method, and the method of variation of parameters. Applications involving linear ordinary differential equations are presented in Chapter 5.

Solutions of linear ordinary differential equations using the Laplace transform are studied in Chapter 6, emphasizing functions involving Heaviside step function and Dirac delta function.

Chapter 7 studies solutions of systems of linear ordinary differential equations. The method of operator, the method of Laplace transform, and the matrix method are introduced. Applications involving systems of linear ordinary differential equations are considered in Chapter 8.

In Chapter 9, solutions of ordinary differential equations in series about an ordinary point and a regular singular point are presented. Applications of Bessel’s equation in engineering are considered.

Some classical methods, including forward and backward Euler method, improved Euler method, and Runge-Kutta methods, are presented in Chapter 10 for numerical solutions of ordinary differential equations.

In Chapter 11, the method of separation of variables is applied to solve partial differential equations. When the method is applicable, it converts a partial differential equation into a set of ordinary differential equations. Flexural vibration of beams and heat conduction are studied as examples of application.

Solutions of ordinary differential equations using Maple are presented in Chapter 12. Symbolic computation software, such as Maple, is very efficient in solving problems involving ordinary differential equations. However, it cannot replace learning and thinking, especially mathematical modeling. It is important to develop analytical skills and proficiency through “hand” calculations, as has been done in previous chapters. This will also help the development of insight into the problems and appreciation of the solution process. For this reason, solutions of ordinary differential equations using Maple is presented in the last chapter of the book instead of a scattering throughout the book.
The book covers a wide range of materials on ordinary differential equations and their engineering applications. There are more than enough materials for a one-term (semester) undergraduate course. Instructors can select the materials according to the curriculum. Drafts of this book were used as the textbook in a one-term undergraduate course at the University of Waterloo.

Acknowledgments

First and foremost, my sincere appreciation goes to my students. It is the students who give me a stage where I can cultivate my talent and passion for teaching. It is for the students that this book is written, as my small contribution to their success in academic and professional careers. My undergraduate students who have used the draft of this book as a textbook have made many encouraging comments and constructive suggestions.

I am very grateful to many people who have reviewed and commented on the book, including Professor Hong-Jian Lai of West Virginia University, Professors S.T. Ariaratnam, Xin-Zhi Liu, Stanislav Potapenko, and Edward Vrscay of the University of Waterloo.

My graduate students Mohamad Alwan, Qinghua Huang, Jun Liu, Shunhao Ni, and Richard Wiebe have carefully read the book and made many helpful and critical suggestions.

My sincere appreciation goes to Mr. Peter Gordon, Senior Editor, Engineering, Cambridge University Press, for his encouragement, trust, and hard work to publish this book.

Special thanks are due to Mr. John Bennett, my mentor, teacher, and friend, for his advice and guidance. He has also painstakingly proofread and copyedited this book.

Without the unfailing love and support of my mother, who has always believed in me, this work would not have been possible. In addition, the care, love, patience, and understanding of my wife Cong-Rong and lovely daughters Victoria and Tiffany have been of inestimable encouragement and help. I love them very much and appreciate all that they have contributed to my work.

I appreciate hearing your comments through email (xie@uwaterloo.ca) or regular correspondence.

Wei-Chau Xie

Waterloo, Ontario, Canada