DIFFERENTIAL EQUATIONS FOR ENGINEERS

This book presents a systematic and comprehensive introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. Detailed step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. Such a detailed, step-by-step approach, especially when applied to practical engineering problems, helps the readers to develop problem-solving skills.

This book is suitable for use not only as a textbook on ordinary differential equations for undergraduate students in an engineering program but also as a guide to selfstudy. It can also be used as a reference after students have completed learning the subject.

Wei-Chau Xie is a Professor in the Department of Civil and Environment Engineering and the Department of Applied Mathematics at the University of Waterloo. He is the author of *Dynamic Stability of Structures* and has published numerous journal articles on dynamic stability, structural dynamics and random vibration, nonlinear dynamics and stochastic mechanics, reliability and safety analysis of engineering systems, and seismic analysis and design of engineering structures. He has been teaching differential equations to engineering students for almost twenty years. He received the Teaching Excellence Award in 2001 in recognition of his exemplary record of outstanding teaching, concern for students, and commitment to the development and enrichment of engineering education at Waterloo. He is the recipient of the Distinguished Teacher Award in 2007, which is the highest formal recognition given by the University of Waterloo for a superior record of continued excellence in teaching. Cambridge University Press 978-0-521-19424-2 - Differential Equations for Engineers Wei-Chau Xie Frontmatter <u>More information</u>

Differential Equations for Engineers

Wei-Chau Xie

University of Waterloo

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521194242

© Wei-Chau Xie 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Xie, Wei-Chau, 1964–
Differential equations for engineers / Wei-Chau Xie.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-19424-2
1. Differential equations. 2. Engineering mathematics. I. Title.
TA347.D45X54 2010
620.001'515352-dc22 2010001101

ISBN 978-0-521-19424-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-19424-2 - Differential Equations for Engineers Wei-Chau Xie Frontmatter More information

t0 My Family

Contents

Preface				(111
1		Intro	duction	1
	1.1	Motivating Examples		
	1.2	1.2 General Concepts and Definitions		
2		First-Order and Simple Higher-Order Differential Equations . 16		
	2.1	The Method of Separation of Variables		16
	2.2	Method of Transformation of Variables		
		2.2.1	Homogeneous Equations	20
		2.2.2	Special Transformations	25
	2.3	Exact	Differential Equations and Integrating Factors	31
		2.3.1	Exact Differential Equations	32
		2.3.2	Integrating Factors	39
		2.3.3	Method of Inspection	45
		2.3.4	Integrating Factors by Groups	48
	2.4	Linear First-Order Equations		
		2.4.1	Linear First-Order Equations	55
		2.4.2	Bernoulli Differential Equations	58
	2.5	5 Equations Solvable for the Independent or Dependent Variable		61
	2.6	Simple	e Higher-Order Differential Equations	68
		2.6.1	Equations Immediately Integrable	68
		2.6.2	The Dependent Variable Absent	70
		2.6.3	The Independent Variable Absent	72
	2.7 Summary		lary	74
	Probl	ems		78
3		Applications of First-Order and Simple Higher-Order Equa		87
	3.1	1 Heating and Cooling		87
	3.2	Motion of a Particle in a Resisting Medium 9		
	3.3	Hanging Cables		97

 $\mathbf{V}\mathbf{I}\mathbf{I}$

VIII		CONTENTS	
	3.3.1 The Suspension Bridge	97	
	3.3.2 Cable under Self-Weight	102	
3.4	Electric Circuits	108	
3.5	Natural Purification in a Stream	114	
3.6	Various Application Problems	120	
Proł	blems	130	
4	Linear Differential Equations	140	
4.1	General Linear Ordinary Differential Equations	140	
4.2	Complementary Solutions		
	4.2.1 Characteristic Equation Having Real Distinct Roots	143	
	4.2.2 Characteristic Equation Having Complex Roots	147	
	4.2.3 Characteristic Equation Having Repeated Roots	151	
4.3	Particular Solutions		
	4.3.1 Method of Undetermined Coefficients	153	
	4.3.2 Method of Operators	162	
	4.3.3 Method of Variation of Parameters	173	
4.4	Euler Differential Equations	178	
4.5	Summary	180	
Proł	blems	183	
5	Applications of Linear Differential Equations	188	
5.1	Vibration of a Single Degree-of-Freedom System	188	
	5.1.1 Formulation—Equation of Motion	188	
	5.1.2 Response of a Single Degree-of-Freedom System	193	
	5.1.2.1 Free Vibration—Complementary Solution	193	
	5.1.2.2 Forced Vibration—Particular Solution	200	
5.2	Electric Circuits	209	
5.3	Vibration of a Vehicle Passing a Speed BumpBeam-Columns		
5.4			
5.5	Various Application Problems	223	
Prot	Problems		
6	The Laplace Transform and Its Applications	244	
6.1	The Laplace Transform	244	

CONTENTS				IX
	6.2	The Heaviside Step Function		249
	6.3	Impul	se Functions and the Dirac Delta Function	254
	6.4 The Inverse Laplace Transform6.5 Solving Differential Equations Using the Laplace Transform6.6 Applications of the Laplace Transform			257
				263
				268
		6.6.1	Response of a Single Degree-of-Freedom System	268
		6.6.2	Other Applications	275
		6.6.3	Beams on Elastic Foundation	283
	6.7	Summ	ary	289
	Prob	oblems		
7	7	Systems of Linear Differential Equations		300
	7.1	Introduction		300
	7.2	The M	lethod of Operator	304
		7.2.1	Complementary Solutions	304
		7.2.2	Particular Solutions	307
	7.3	The M	lethod of Laplace Transform	318
	7.4	The Matrix Method		325
		7.4.1	Complementary Solutions	326
		7.4.2	Particular Solutions	334
		7.4.3	Response of Multiple Degrees-of-Freedom Systems	344
	7.5	Summary		347
		7.5.1	The Method of Operator	347
		7.5.2	The Method of Laplace Transform	348
		7.5.3	The Matrix Method	349
	Prob	blems		
8		Applications of Systems of Linear Differential Equations		357
	8.1	Mathematical Modeling of Mechanical Vibrations		357
	8.2	Vibration Absorbers or Tuned Mass Dampers		366
	8.3	An Electric Circuit		372
	8.4	Vibrat	ion of a Two-Story Shear Building	377
		8.4.1	Free Vibration—Complementary Solutions	378
		8.4.2	Forced Vibration—General Solutions	380
	Prob	lems		384

CAMBRIDGE

x			СС	NTENTS
g)	Series Solutions of Differential Equations		. 390
	9.1	Review of Power Series		391
	9.2	Series	Series Solution about an Ordinary Point	
	9.3	Series Solution about a Regular Singular Point		403
		9.3.1	Bessel's Equation and Its Applications	408
			9.3.1.1 Solutions of Bessel's Equation	408
		9.3.2	Applications of Bessel's Equation	418
	9.4	Summ	ary	424
	Prob	oblems 4		
	0	N	niel Calufore of Differential Frenctions	
	() 10.1	Nume	erical Solutions of Differential Equations	. 431
		Nume	rical Solutions of First-Order Initial Value Problems	431
		10.1.1	The Euler Method or Constant Slope Method	432
		10.1.2	Error Analysis	434
		10.1.3	The Backward Euler Method	436
		10.1.4	Improved Euler Method—Average Slope Method	437
		10.1.5	The Runge-Kutta Methods	440
	10.2	2 Numerical Solutions of Systems of Differential Equations		445
	10.3	3 Stiff Differential Equations		449
	10.4	4 Summary		452
	Prob	lems		454
1	1	Partia	I Differential Equations	· 457
	11.1	Simple	e Partial Differential Equations	457
	11.2 11.3	Metho	d of Separation of Variables	458
		Applic	ation—Flexural Motion of Beams	465
		11.3.1	Formulation—Equation of Motion	465
		11.3.2	Free Vibration	466
		11.3.3	Forced Vibration	471
	11.4	Applic	ation—Heat Conduction	473
		11.4.1	Formulation—Heat Equation	473
		11.4.2	Two-Dimensional Steady-State Heat Conduction	476
		11.4.3	One-Dimensional Transient Heat Conduction	480
		11.4.4	One-Dimensional Transient Heat Conduction on a Semi-Infinite	
			Interval	483

CONTENTS			XI		
	11.4.5	Three-Dimensional Steady-State Heat Conduction	488		
11.5	Summary		492		
Prob	roblems				
12	Solvi	ng Ordinary Differential Equations Using <i>Maple</i>	498		
12.1	Closed	d-Form Solutions of Differential Equations	499		
	12.1.1	Simple Ordinary Differential Equations	499		
	12.1.2	Linear Ordinary Differential Equations	506		
	12.1.3	The Laplace Transform	507		
	12.1.4	Systems of Ordinary Differential Equations	509		
12.2	2.2 Series Solutions of Differential Equations2.3 Numerical Solutions of Differential Equations		512		
12.3			517		
Prob	roblems				
Appendix A Tables of Mathematical Formulas					
A.1	Table	of Trigonometric Identities	531		
A.2	Table	e of Derivatives	533		
A.3	Table of Integrals		534		
A.4	Table	of Laplace Transforms	537		
A.5	Table	of Inverse Laplace Transforms	539		
Index			542		

Cambridge University Press 978-0-521-19424-2 - Differential Equations for Engineers Wei-Chau Xie Frontmatter <u>More information</u>

Preface

Background

Differential equations have wide applications in various engineering and science disciplines. In general, modeling of the variation of a physical quantity, such as temperature, pressure, displacement, velocity, stress, strain, current, voltage, or concentration of a pollutant, with the change of time or location, or both would result in differential equations. Similarly, studying the variation of some physical quantities on other physical quantities would also lead to differential equations. In fact, many engineering subjects, such as mechanical vibration or structural dynamics, heat transfer, or theory of electric circuits, are founded on the theory of differential equations. It is practically important for engineers to be able to model physical problems using mathematical equations, and then solve these equations so that the behavior of the systems concerned can be studied.

I have been teaching differential equations to engineering students for the past two decades. Most, if not all, of the textbooks are written by mathematicians with little engineering background. Based on my experience and feedback from students, the following lists some of the gaps frequently seen in current textbooks:

> A major focus is put on explaining mathematical concepts

For engineers, the purpose of learning the theory of differential equations is to be able to solve practical problems where differential equations are used. For engineering students, it is more important to know the applications and techniques for solving application problems than to delve into the nuances of mathematical concepts and theorems. Knowing the appropriate applications can motivate them to study the mathematical concepts and techniques. However, it is much more challenging to model an application problem using physical principles and then solve the resulting differential equations than it is to merely carry out mathematical exercises.

Insufficient emphasis is placed on the step-by-step problem solving techniques

Engineering students do not usually have the same mathematical background and interest as students who major in mathematics. Mathematicians are more interested if: (1) there are solutions to a differential equation or a system of differential equations; (2) the solutions are unique under a certain set of conditions; and (3) the differential equations can be solved. On the other hand, XIV

PREFACE

engineers are more interested in mathematical modeling of a practical problem and actually solving the equations to find the solutions using the easiest possible method. Hence, a detailed step-by-step approach, especially applied to practical engineering problems, helps students to develop problem solving skills.

 Presentations are usually formula-driven with little variation in visual design It is very difficult to attract students to read boring formulas without variation of presentation. Readers often miss the points of importance.

Objectives

This book addresses the needs of engineering students and aims to achieve the following objectives:

- To motivate students on the relevance of differential equations in engineering through their applications in various engineering disciplines. Studies of various types of differential equations are motivated by engineering applications; theory and techniques for solving differential equations are then applied to solve practical engineering problems.
- To have a balance between theory and applications. This book could be used as a reference after students have completed learning the subject. As a reference, it has to be reasonably comprehensive and complete. Detailed step-by-step analysis is presented to model the engineering problems using differential equations and to solve the differential equations.
- To present the mathematical concepts and various techniques in a clear, logical and concise manner. Various visual features, such as side-notes (preceded by the 2 symbol), different fonts and shades, are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. This book is not only suitable as a textbook for classroom use but also is easy for self-study. As a textbook, it has to be easy to understand. For self-study, the presentation is detailed with all necessary steps and useful formulas given as side-notes.

Scope

This book is primarily for engineering students and practitioners as the main audience. It is suitable as a textbook on ordinary differential equations for undergraduate students in an engineering program. Such a course is usually offered in the second year after students have taken calculus and linear algebra in the first year. Although it is assumed that students have a working knowledge of calculus and linear algebra, some important concepts and results are reviewed when they are first used so as to refresh their memory.

PREFACE

xv

Chapter 1 first presents some motivating examples, which will be studied in detail later in the book, to illustrate how differential equations arise in engineering applications. Some basic general concepts of differential equations are then introduced.

In Chapter 2, various techniques for solving first-order and simple higher-order ordinary differential equations are presented. These methods are then applied in Chapter 3 to study various application problems involving first-order and simple higher-order differential equations.

Chapter 4 studies linear ordinary differential equations. Complementary solutions are obtained through the characteristic equations and characteristic numbers. Particular solutions are obtained using the method of undetermined coefficients, the operator method, and the method of variation of parameters. Applications involving linear ordinary differential equations are presented in Chapter 5.

Solutions of linear ordinary differential equations using the Laplace transform are studied in Chapter 6, emphasizing functions involving Heaviside step function and Dirac delta function.

Chapter 7 studies solutions of systems of linear ordinary differential equations. The method of operator, the method of Laplace transform, and the matrix method are introduced. Applications involving systems of linear ordinary differential equations are considered in Chapter 8.

In Chapter 9, solutions of ordinary differential equations in series about an ordinary point and a regular singular point are presented. Applications of Bessel's equation in engineering are considered.

Some classical methods, including forward and backward Euler method, improved Euler method, and Runge-Kutta methods, are presented in Chapter 10 for numerical solutions of ordinary differential equations.

In Chapter 11, the method of separation of variables is applied to solve partial differential equations. When the method is applicable, it converts a partial differential equation into a set of ordinary differential equations. Flexural vibration of beams and heat conduction are studied as examples of application.

Solutions of ordinary differential equations using *Maple* are presented in Chapter 12. Symbolic computation software, such as *Maple*, is very efficient in solving problems involving ordinary differential equations. However, it cannot replace learning and thinking, especially mathematical modeling. It is important to develop analytical skills and proficiency through "hand" calculations, as has been done in previous chapters. This will also help the development of insight into the problems and appreciation of the solution process. For this reason, solutions of ordinary differential equations using *Maple* is presented in the last chapter of the book instead of a scattering throughout the book.

Cambridge University Press 978-0-521-19424-2 - Differential Equations for Engineers Wei-Chau Xie Frontmatter <u>More information</u>

XVI

PREFACE

The book covers a wide range of materials on ordinary differential equations and their engineering applications. There are more than enough materials for a one-term (semester) undergraduate course. Instructors can select the materials according to the curriculum. Drafts of this book were used as the textbook in a one-term undergraduate course at the University of Waterloo.

Acknowledgments

First and foremost, my sincere appreciation goes to my students. It is the students who give me a stage where I can cultivate my talent and passion for teaching. It is for the students that this book is written, as my small contribution to their success in academic and professional careers. My undergraduate students who have used the draft of this book as a textbook have made many encouraging comments and constructive suggestions.

I am very grateful to many people who have reviewed and commented on the book, including Professor Hong-Jian Lai of West Virginia University, Professors S.T. Ariaratnam, Xin-Zhi Liu, Stanislav Potapenko, and Edward Vrscay of the University of Waterloo.

My graduate students Mohamad Alwan, Qinghua Huang, Jun Liu, Shunhao Ni, and Richard Wiebe have carefully read the book and made many helpful and critical suggestions.

My sincere appreciation goes to Mr. Peter Gordon, Senior Editor, Engineering, Cambridge University Press, for his encouragement, trust, and hard work to publish this book.

Special thanks are due to Mr. John Bennett, my mentor, teacher, and friend, for his advice and guidance. He has also painstakingly proofread and copyedited this book.

Without the unfailing love and support of my mother, who has always believed in me, this work would not have been possible. In addition, the care, love, patience, and understanding of my wife Cong-Rong and lovely daughters Victoria and Tiffany have been of inestimable encouragement and help. I love them very much and appreciate all that they have contributed to my work.

I appreciate hearing your comments through email (xie@uwaterloo.ca) or regular correspondence.

Wei-Chau Xie Waterloo, Ontario, Canada