Supergravity

Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Although there are many books on string theory, this is the first-ever authoritative and systematic account of supergravity.

Written by two of the most respected workers in the field, it provides a solid introduction to the fundamentals of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories ($D = 4$ and $D = 11$) and the main gauge theory tools are explained. The second half of the book is more advanced: complex geometry and $N = 1$ and $N = 2$ supergravity theories are covered. Classical solutions and a chapter on anti-de Sitter/conformal field theory (AdS/CFT) correspondence complete the text.

Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology, and solutions of supergravity theories, this text is an invaluable resource for researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.

Daniel Z. Freedman is Professor of Applied Mathematics and Physics at the Massachusetts Institute of Technology. He has made many research contributions to supersymmetry and supergravity: he was a co-discoverer of the first supergravity theory in 1976. This discovery has been recognized by the award of the Dirac Medal and Prize in 1993, and the Dannie Heineman Prize of the American Physical Society in 2006.

Antoine Van Proeyen is Head of the Theoretical Physics Section at the KU Leuven, Belgium. Since 1979, he has been involved in the construction of various supergravity theories, the resulting special geometries, and their applications to phenomenology and cosmology.
The metric is ‘mostly plus’, i.e. $- + \ldots +$. The curvature is

$$R_{\mu\nu\rho\sigma} = g_{\rho\sigma}(\partial_\mu \Gamma^\rho_{\nu\sigma} - \partial_\nu \Gamma^\rho_{\mu\sigma} + \Gamma^\rho_{\mu\tau} \Gamma^\tau_{\nu\sigma} - \Gamma^\rho_{\nu\tau} \Gamma^\tau_{\mu\sigma})$$

$$= \epsilon^{\rho\sigma}_{\lambda\mu}(\partial_\mu \omega_{\lambda\nuab} - \partial_\nu \omega_{\lambda\muab} + \omega_{\lambda\nuac} \omega^c_{\lambda\mu} - \omega_{\lambda\muac} \omega^c_{\lambda\nu})$$.

Ricci tensor and energy–momentum tensors are defined by

$$R_{\mu\nu} = R^\rho_{\nu\rho\mu}, \quad R = g^{\mu\nu} R_{\mu\nu}.$$

Covariant derivatives involving the spin connection are, for vectors and spinors,

$$D_\mu V^a = \partial_\mu V^a + \omega^a_{\mu\nu} V^b \eta^{\nu b}, \quad D_\mu \lambda = \partial_\mu \lambda + \frac{1}{4} \omega^a_{\mu\nu} \gamma^{a\nu} \lambda.$$

We use (anti)symmetrization of indices with ‘weight 1’, i.e.

$$A_{[ab]} = \frac{1}{2} (A_{ab} - A_{ba}) \quad \text{and} \quad A_{(ab)} = \frac{1}{2} (A_{ab} + A_{ba}).$$

The Levi-Civita tensor is

$$\varepsilon_{0123} = 1, \quad \varepsilon^{0123} = -1.$$

The dual, self-dual, and anti-self-dual of antisymmetric tensors are defined by

$$\tilde{H}^{ab} = -\frac{1}{2} i \varepsilon^{abcd} H_{cd}, \quad H^\pm_{ab} = \frac{1}{2} (H_{ab} \pm \tilde{H}_{ab}), \quad H^\pm_{ab} = (H^\mp_{ab})^*.$$

Structure constants are defined by

$$[T_A, T_B] = f_{ABC} T_C.$$

The Clifford algebra is

$$\gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = 2 g_{\mu\nu}, \quad \gamma_{\mu\nu} = \gamma_{[\mu} \gamma_{\nu]}, \ldots,$$

$$(\gamma^\mu)^* = \gamma^0 \gamma^\mu \gamma^0,$$

$$\gamma_a = (-1)^{(D/2)+1} \gamma_0 \gamma_1 \ldots \gamma_D,$$

in four dimensions:

$$\gamma_a = i \gamma_0 \gamma_1 \gamma_2 \gamma_3, \quad \varepsilon_{abcd} \gamma^d = i \gamma_a \gamma_{bc}.$$

The Majorana and Dirac conjugates are

$$\tilde{\chi} = \chi^T C, \quad \bar{\chi} = i \chi^\dagger \gamma^0.$$

We mostly use the former. For Majorana fermions the two are equal.

The main SUSY commutator is

$$[\delta(\epsilon_1), \delta(\epsilon_2)] = \frac{1}{2} \varepsilon^2 \gamma^\mu \epsilon_1 \partial_\mu.$$

p-form components are defined by

$$\Phi_p = \frac{1}{p!} \Phi_{\mu_1 \ldots \mu_p} d x^{\mu_1} \wedge \cdots \wedge d x^{\mu_p}. $$

The differential acts from the left:

$$d A = \partial_\mu A_\mu d x^\nu \wedge d x^\mu, \quad A = A_\mu d x^\mu.$$
Contents

Preface xv
Acknowledgements xvii
Introduction 1

Part I Relativistic field theory in Minkowski spacetime 5

1 Scalar field theory and its symmetries 7
 1.1 The scalar field system 7
 1.2 Symmetries of the system 8
 1.2.1 SO(n) internal symmetry 9
 1.2.2 General internal symmetry 10
 1.2.3 Spacetime symmetries – the Lorentz and Poincaré groups 12
 1.3 Noether currents and charges 18
 1.4 Symmetries in the canonical formalism 21
 1.5 Quantum operators 22
 1.6 The Lorentz group for \(D = 4 \) 24

2 The Dirac field 25
 2.1 The homomorphism of \(\text{SL}(2, \mathbb{C}) \rightarrow \text{SO}(3, 1) \) 25
 2.2 The Dirac equation 28
 2.3 Dirac adjoint and bilinear form 31
 2.4 Dirac action 32
 2.5 The spinors \(u(\tilde{p}, s) \) and \(v(\tilde{p}, s) \) for \(D = 4 \) 33
 2.6 Weyl spinor fields in even spacetime dimension 35
 2.7 Conserved currents 36
 2.7.1 Conserved \(U(1) \) current 36
 2.7.2 Energy–momentum tensors for the Dirac field 37

3 Clifford algebras and spinors 39
 3.1 The Clifford algebra in general dimension 39
 3.1.1 The generating \(\gamma \)-matrices 39
 3.1.2 The complete Clifford algebra 40
 3.1.3 Levi-Civita symbol 41
 3.1.4 Practical \(\gamma \)-matrix manipulation 42
 3.1.5 Basis of the algebra for even dimension \(D = 2m \) 43
3.1.6 The highest rank Clifford algebra element 44
3.1.7 Odd spacetime dimension $D = 2m + 1$ 46
3.1.8 Symmetries of γ-matrices 47

3.2 Spinors in general dimensions 49
3.2.1 Spinors and spinor bilinears 49
3.2.2 Spinor indices 50
3.2.3 Fierz rearrangement 52
3.2.4 Reality 54

3.3 Majorana spinors 55
3.3.1 Definition and properties 56
3.3.2 Symplectic Majorana spinors 58
3.3.3 Dimensions of minimal spinors 58

3.4 Majorana spinors in physical theories 59
3.4.1 Variation of a Majorana Lagrangian 59
3.4.2 Relation of Majorana and Weyl spinor theories 60

Appendix 3A Details of the Clifford algebras for $D = 2m$
3A.1 Traces and the basis of the Clifford algebra 62
3A.2 Uniqueness of the γ-matrix representation 63
3A.3 The Clifford algebra for odd spacetime dimensions 65
3A.4 Determination of symmetries of γ-matrices 65
3A.5 Friendly representations 66

4 The Maxwell and Yang–Mills gauge fields 68
4.1 The abelian gauge field $A_\mu(x)$ 69
4.1.1 Gauge invariance and fields with electric charge 69
4.1.2 The free gauge field 71
4.1.3 Sources and Green’s function 73
4.1.4 Quantum electrodynamics 76
4.1.5 The stress tensor and gauge covariant translations 77
4.2 Electromagnetic duality 77
4.2.1 Dual tensors 78
4.2.2 Duality for one free electromagnetic field 78
4.2.3 Duality for gauge field and complex scalar 80
4.2.4 Electromagnetic duality for coupled Maxwell fields 83
4.3 Non-abelian gauge symmetry 86
4.3.1 Global internal symmetry 86
4.3.2 Gauging the symmetry 88
4.3.3 Yang–Mills field strength and action 89
4.3.4 Yang–Mills theory for $G = SU(N)$ 90
4.4 Internal symmetry for Majorana spinors 93

5 The free Rarita–Schwinger field 95
5.1 The initial value problem 97
Contents

5.2 Sources and Green’s function 99
5.3 Massive gravitinos from dimensional reduction 102
5.3.1 Dimensional reduction for scalar fields 102
5.3.2 Dimensional reduction for spinor fields 103
5.3.3 Dimensional reduction for the vector gauge field 104
5.3.4 Finally $\Psi_1(x,y)$ 104

6 $\mathcal{N} = 1$ global supersymmetry in $D = 4$ 107
6.1 Basic SUSY field theory 109
6.1.1 Conserved supercurrents 109
6.1.2 SUSY Yang–Mills theory 110
6.1.3 SUSY transformation rules 111
6.2 SUSY field theories of the chiral multiplet 112
6.2.1 $U(1)_R$ symmetry 115
6.2.2 The SUSY algebra 116
6.2.3 More chiral multiplets 119
6.3 SUSY gauge theories 120
6.3.1 SUSY Yang–Mills vector multiplet 121
6.3.2 Chiral multiplets in SUSY gauge theories 122
6.4 Massless representations of \mathcal{N}–extended supersymmetry 125
6.4.1 Particle representations of \mathcal{N}–extended supersymmetry 125
6.4.2 Structure of massless representations 127
Appendix 6A Extended supersymmetry and Weyl spinors 129
Appendix 6B On- and off-shell multiplets and degrees of freedom 130

Part II Differential geometry and gravity 133

7 Differential geometry 135
7.1 Manifolds 135
7.2 Scalars, vectors, tensors, etc. 137
7.3 The algebra and calculus of differential forms 140
7.4 The metric and frame field on a manifold 142
7.4.1 The metric 142
7.4.2 The frame field 143
7.4.3 Induced metrics 145
7.5 Volume forms and integration 146
7.6 Hodge duality of forms 149
7.7 Stokes’ theorem and electromagnetic charges 151
7.8 p-form gauge fields 152
7.9 Connections and covariant derivatives 154
7.9.1 The first structure equation and the spin connection $\omega_{\mu ab}$ 155
7.9.2 The affine connection $\Gamma_{\mu}^{\rho \nu}$ 158
7.9.3 Partial integration 160
7.10 The second structure equation and the curvature tensor 161

© in this web service Cambridge University Press
7.11 The nonlinear σ-model 163
7.12 Symmetries and Killing vectors 166
 7.12.1 σ-model symmetries 166
 7.12.2 Symmetries of the Poincaré plane 169

8 The first and second order formulations of general relativity 171
 8.1 Second order formalism for gravity and bosonic matter 172
 8.2 Gravitational fluctuations of flat spacetime 174
 8.2.1 The graviton Green’s function 177
 8.3 Second order formalism for gravity and fermions 178
 8.4 First order formalism for gravity and fermions 182

Part III Basic supergravity 185

9 $\mathcal{N} = 1$ pure supergravity in four dimensions 187
 9.1 The universal part of supergravity 188
 9.2 Supergravity in the first order formalism 191
 9.3 The 1.5 order formalism 193
 9.4 Local supersymmetry of $\mathcal{N} = 1, D = 4$ supergravity 194
 9.5 The algebra of local supersymmetry 197
 9.6 Anti-de Sitter supergravity 199

10 $D = 11$ supergravity 201
 10.1 $D \leq 11$ from dimensional reduction 201
 10.2 The field content of $D = 11$ supergravity 203
 10.3 Construction of the action and transformation rules 203
 10.4 The algebra of $D = 11$ supergravity 210

11 General gauge theory 212
 11.1 Symmetries 212
 11.1.1 Global symmetries 213
 11.1.2 Local symmetries and gauge fields 217
 11.1.3 Modified symmetry algebras 219
 11.2 Covariant quantities 221
 11.2.1 Covariant derivatives 222
 11.2.2 Curvatures 223
 11.3 Gauged spacetime translations 225
 11.3.1 Gauge transformations for the Poincaré group 225
 11.3.2 Covariant derivatives and general coordinate transformations 227
 11.3.3 Covariant derivatives and curvatures in a gravity theory 230
 11.3.4 Calculating transformations of covariant quantities 231

Appendix 11A Manipulating covariant derivatives 233
 11A.1 Proof of the main lemma 233
 11A.2 Examples in supergravity 234
12 Survey of supergravities

12.1 The minimal superalgebras

12.1.1 Four dimensions

12.1.2 Minimal superalgebras in higher dimensions

12.2 The \(R \)-symmetry group

12.3 Multiplets

12.3.1 Multiplets in four dimensions

12.3.2 Multiplets in more than four dimensions

12.4 Supergravity theories: towards a catalogue

12.4.1 The basic theories and kinetic terms

12.4.2 Deformations and gauged supergravities

12.5 Scalars and geometry

12.6 Solutions and preserved supersymmetries

12.6.1 Anti-de Sitter superalgebras

12.6.2 Central charges in four dimensions

12.6.3 ‘Central charges’ in higher dimensions

Part IV Complex geometry and global SUSY

13 Complex manifolds

13.1 The local description of complex and Kähler manifolds

13.2 Mathematical structure of Kähler manifolds

13.3 The Kähler manifolds \(\mathbb{CP}^n \)

13.4 Symmetries of Kähler metrics

13.4.1 Holomorphic Killing vectors and moment maps

13.4.2 Algebra of holomorphic Killing vectors

13.4.3 The Killing vectors of \(\mathbb{CP}^1 \)

14 General actions with \(\mathcal{N} = 1 \) supersymmetry

14.1 Multiplets

14.1.1 Chiral multiplets

14.1.2 Real multiplets

14.2 Generalized actions by multiplet calculus

14.2.1 The superpotential

14.2.2 Kinetic terms for chiral multiplets

14.2.3 Kinetic terms for gauge multiplets

14.3 Kähler geometry from chiral multiplets

14.4 General couplings of chiral multiplets and gauge multiplets

14.4.1 Global symmetries of the SUSY \(\sigma \)-model

14.4.2 Gauge and SUSY transformations for chiral multiplets

14.4.3 Actions of chiral multiplets in a gauge theory

14.4.4 General kinetic action of the gauge multiplet

14.4.5 Requirements for an \(\mathcal{N} = 1 \) SUSY gauge theory

14.5 The physical theory
14.5.1 Elimination of auxiliary fields	288
14.5.2 The scalar potential	289
14.5.3 The vacuum state and SUSY breaking	291
14.5.4 Supersymmetry breaking and the Goldstone fermion	293
14.5.5 Mass spectra and the supertrace sum rule	296
14.5.6 Coda	298

Appendix 14A Superspace | 298 |
Appendix 14B Appendix: Covariant supersymmetry transformations | 302 |

Part V Superconformal construction of supergravity theories | 305 |

15 Gravity as a conformal gauge theory | 307 |
15.1 The strategy | 308 |
15.2 The conformal algebra | 309 |
15.3 Conformal transformations on fields | 310 |
15.4 The gauge fields and constraints | 313 |
15.5 The action | 315 |
15.6 Recapitulation | 317 |
15.7 Homothetic Killing vectors | 317 |

16 The conformal approach to pure $\mathcal{N} = 1$ supergravity | 321 |
16.1 Ingredients | 321 |
16.1.1 Superconformal algebra | 321 |
16.1.2 Gauge fields, transformations, and curvatures | 323 |
16.1.3 Constraints | 325 |
16.1.4 Superconformal transformation rules of a chiral multiplet | 328 |
16.2 The action | 331 |
16.2.1 Superconformal action of the chiral multiplet | 331 |
16.2.2 Gauge fixing | 333 |
16.2.3 The result | 334 |

17 Construction of the matter-coupled $\mathcal{N} = 1$ supergravity | 337 |
17.1 Superconformal tensor calculus | 338 |
17.1.1 The superconformal gauge multiplet | 338 |
17.1.2 The superconformal real multiplet | 339 |
17.1.3 Gauge transformations of superconformal chiral multiplets | 340 |
17.1.4 Invariant actions | 342 |
17.2 Construction of the action | 343 |
17.2.1 Conformal weights | 343 |
17.2.2 Superconformal invariant action (ungauged) | 343 |
17.2.3 Gauged superconformal supergravity | 345 |
17.2.4 Elimination of auxiliary fields | 347 |
17.2.5 Partial gauge fixing | 351 |
17.3 Projective Kähler manifolds | 351 |
17.3.1 The example of CP^n 352
17.3.2 Dilatations and holomorphic homothetic Killing vectors 353
17.3.3 The projective parametrization 354
17.3.4 The Kähler cone 357
17.3.5 The projection 358
17.3.6 Kähler transformations 359
17.3.7 Physical fermions 363
17.3.8 Symmetries of projective Kähler manifolds 364
17.3.9 T-gauge and decomposition laws 365
17.3.10 An explicit example: $SU(1, 1)/U(1)$ model 368
17.4 From conformal to Poincaré supergravity 369
17.4.1 The superpotential 370
17.4.2 The potential 371
17.4.3 Fermion terms 371
17.5 Review and preview 373
17.5.1 Projective and Kähler–Hodge manifolds 374
17.5.2 Compact manifolds 375
Appendix 17A Kähler–Hodge manifolds 376
17A.1 Dirac quantization condition 377
17A.2 Kähler–Hodge manifolds 378
Appendix 17B Steps in the derivation of (17.7) 380

Part VI $\mathcal{N} = 1$ supergravity actions and applications 383

18 The physical $\mathcal{N} = 1$ matter-coupled supergravity 385
18.1 The physical action 386
18.2 Transformation rules 389
18.3 Further remarks 390
18.3.1 Engineering dimensions 390
18.3.2 Rigid or global limit 390
18.3.3 Quantum effects and global symmetries 391

19 Applications of $\mathcal{N} = 1$ supergravity 392
19.1 Supersymmetry breaking and the super-BEH effect 392
19.1.1 Goldstino and the super-BEH effect 392
19.1.2 Extension to cosmological solutions 395
19.1.3 Mass sum rules in supergravity 396
19.2 The gravity mediation scenario 397
19.2.1 The Polónyi model of the hidden sector 398
19.2.2 Soft SUSY breaking in the observable sector 399
19.3 No-scale models 401
19.4 Supersymmetry and anti-de Sitter space 403
19.5 R-symmetry and Fayet–Iliopoulos terms 404
19.5.1 The R-gauge field and transformations 405
Contents

- 19.5.2 Fayet–Iliopoulos terms 406
- 19.5.3 An example with non-minimal Kähler potential 406

Part VII Extended $\mathcal{N} = 2$ supergravity

20 Construction of the matter-coupled $\mathcal{N} = 2$ supergravity

- 20.1 Global supersymmetry 411
 - 20.1.1 Gauge multiplets for $D = 6$ 412
 - 20.1.2 Gauge multiplets for $D = 5$ 413
 - 20.1.3 Gauge multiplets for $D = 4$ 415
 - 20.1.4 Hypermultiplets 418
 - 20.1.5 Gauged hypermultiplets 422
- 20.2 $\mathcal{N} = 2$ superconformal calculus 425
 - 20.2.1 The superconformal algebra 425
 - 20.2.2 Gauging of the superconformal algebra 427
 - 20.2.3 Conformal matter multiplets 430
 - 20.2.4 Superconformal actions 432
 - 20.2.5 Partial gauge fixing 434
 - 20.2.6 Elimination of auxiliary fields 436
 - 20.2.7 Complete action 439
 - 20.2.8 $D = 5$ and $D = 6$, $\mathcal{N} = 2$ supergravities 440
- 20.3 Special geometry 440
 - 20.3.1 The family of special manifolds 440
 - 20.3.2 Very special real geometry 442
 - 20.3.3 Special Kähler geometry 443
 - 20.3.4 Hyper-Kähler and quaternionic-Kähler manifolds 452
- 20.4 From conformal to Poincaré supergravity 459
 - 20.4.1 Kinetic terms of the bosons 459
 - 20.4.2 Identities of special Kähler geometry 459
 - 20.4.3 The potential 460
 - 20.4.4 Physical fermions and other terms 460
 - 20.4.5 Supersymmetry and gauge transformations 461
- Appendix 20A SU(2) conventions and triplets 463
- Appendix 20B Dimensional reduction $6 \rightarrow 5 \rightarrow 4$ 464
 - 20B.1 Reducing from $D = 6 \rightarrow D = 5$ 464
 - 20B.2 Reducing from $D = 5 \rightarrow D = 4$ 464
- Appendix 20C Definition of rigid special Kähler geometry 465

21 The physical $\mathcal{N} = 2$ matter-coupled supergravity

- 21.1 The bosonic sector 469
 - 21.1.1 The basic (ungauged) $\mathcal{N} = 2$, $D = 4$ matter-coupled supergravity 469
 - 21.1.2 The gauged supergravities 471
- 21.2 The symplectic formulation 472
Contents

21.2.1 Symplectic definition 472
21.2.2 Comparison of symplectic and prepotential formulation 474
21.2.3 Gauge transformations and symplectic vectors 474
21.2.4 Physical fermions and duality 475

21.3 Action and transformation laws 476
21.3.1 Final action 476
21.3.2 Supersymmetry transformations 477

21.4 Applications 479
21.4.1 Partial supersymmetry breaking 479
21.4.2 Field strengths and central charges 480
21.4.3 Moduli spaces of Calabi–Yau manifolds 480

21.5 Remarks 482
21.5.1 Fayet–Iliopoulos terms 482
21.5.2 \(\sigma\)-model symmetries 482
21.5.3 Engineering dimensions 482

Part VIII Classical solutions and the AdS/CFT correspondence 485

22 Classical solutions of gravity and supergravity 487
22.1 Some solutions of the field equations 487
22.1.1 Prelude: frames and connections on spheres 487
22.1.2 Anti-de Sitter space 489
22.1.3 \(\text{AdS}_D\) obtained from its embedding in \(\mathbb{R}^{D+1}\) 490
22.1.4 Spacetime metrics with spherical symmetry 496
22.1.5 \(\text{AdS}–\text{Schwarzschild}\) spacetime 498
22.1.6 The Reissner–Nordström metric 499
22.1.7 A more general Reissner–Nordström solution 501

22.2 Killing spinors and BPS solutions 503
22.2.1 The integrability condition for Killing spinors 505
22.2.2 Commuting and anti-commuting Killing spinors 505

22.3 Killing spinors for anti-de Sitter space 506

22.4 Extremal Reissner–Nordström spacetimes as BPS solutions 508

22.5 The black hole attractor mechanism 510
22.5.1 Example of a black hole attractor 511
22.5.2 The attractor mechanism – real slow and simple 513

22.6 Supersymmetry of the black holes 517
22.6.1 Killing spinors 517
22.6.2 The central charge 519
22.6.3 The black hole potential 521

22.7 First order gradient flow equations 522

22.8 The attractor mechanism – fast and furious 523

Appendix 22A Killing spinors for pp-waves 525
Contents

23 The AdS/CFT correspondence

23.1 The $\mathcal{N} = 4$ SYM theory

23.2 Type IIB string theory and $D3$-branes

23.3 The $D3$-brane solution of Type IIB supergravity

23.4 Kaluza–Klein analysis on AdS$_5 \otimes S^5$

23.5 Euclidean AdS and its inversion symmetry

23.6 Inversion and CFT correlation functions

23.7 The free massive scalar field in Euclidean AdS$_{d+1}$

23.8 AdS/CFT correlators in a toy model

23.9 Three-point correlation functions

23.10 Two-point correlation functions

23.11 Holographic renormalization

23.11.1 The scalar two-point function in a CFT$_d$

23.11.2 The holographic trace anomaly

23.12 Holographic RG flows

23.12.1 AAdS domain wall solutions

23.12.2 The holographic c-theorem

23.12.3 First order flow equations

23.13 AdS/CFT and hydrodynamics

Appendix A Comparison of notation

A.1 Spacetime and gravity

A.2 Spinor conventions

A.3 Components of differential forms

A.4 Covariant derivatives

Appendix B Lie algebras and superalgebras

B.1 Groups and representations

B.2 Lie algebras

B.3 Superalgebras

References

Index
The main purpose of this book is to explore the structure of supergravity theories at the classical level. Where appropriate we take a general D-dimensional viewpoint, usually with special emphasis on $D = 4$. Readers can consult the Contents for a detailed list of the topics treated, so we limit ourselves here to a few comments to guide readers. We have tried to organize the material so that readers of varying educational backgrounds can begin to read at a point appropriate to their background. Part I should be accessible to readers who have studied relativistic field theory enough to appreciate the importance of Lagrangians, actions, and their symmetries. Part II describes the differential geometric background and some basic physics of the general theory of relativity. The basic supergravity theories are presented in Part III using techniques developed in earlier chapters. In Part IV we discuss complex geometry and apply it to matter couplings in global $\mathcal{N} = 1$ supersymmetry. In Part V we begin a systematic derivation of $\mathcal{N} = 1$ matter-coupled supergravity using the conformal compensator method. The going can get tough on this subject. For this reason we present the final physical action and transformation rules and some basic applications in two separate short chapters in Part VI. Part VII is devoted to a systematic discussion of $\mathcal{N} = 2$ supergravity, including a short chapter with the results needed for applications. Two major applications of supergravity, classical solutions and the AdS/CFT correspondence, are discussed in Part VIII in considerable detail. It should be possible to understand these chapters without full study of earlier parts of the book.

Many interesting aspects of supergravity, some of them subjects of current research, could not be covered in this book. These include theories in spacetime dimensions $D < 4$, higher derivative actions, embedding tensors, infinite Lie algebra symmetries, and the positive energy theorem.

Like many other subjects in theoretical physics, supersymmetry and supergravity are best learned by readers who are willing to ‘get their hands dirty’. This means actively working out problems that reinforce the material under discussion. To facilitate this aspect of the learning process, many exercises for readers appear within each chapter. We give a rough indication of the level of each exercise as follows:
Preface

Level 1. The result of this exercise will be used later in the book.
Level 2. This exercise is intended to illuminate the subject under discussion, but it is not needed in the rest of the book.
Level 3. This exercise is meant to challenge readers, but is not essential.

These levels are indicated respectively by single, double or triple gray bars in the outside margin.

A website featuring solutions to some exercises, errata and additional reading material, can be found at www.cambridge.org/supergravity.

Dan Freedman
Toine Van Proeyen
October 2011
We thank Eric Bergshoeff, Paul Chesler, Bernard de Wit, Eric D'Hoker, Henrique Elvang, John Estes, Gary Gibbons, Joaquim Gomis, Renata Kallosh, Hong Liu, Marián Lledó, Samir Mathur, John McGreevy, Michael Peskin, Leonardo Rastelli, Kostas Skenderis, Stefan Vandoren, Bert Vercnocke and Giovanni Villadoro. We thank the students in various courses (Leuven advanced field theory course, Doctoral schools in Paris, Barcelona, Hamburg), and also Frederik Coomans, Serge Dendas, Daniel Harlow, Andrew Larkoski, Jonathan Maltz, Thomas Rube, Walter Van Herck and Bert Van Pol for their input in the preparation of this text and their critical remarks.

Our home institutions have supported the writing of this book over a period of years, and we are grateful. We also thank the Galileo Galilei Institute in Florence and the Department of Applied Mathematics and Theoretical Physics in Cambridge for support during extended visits, and the Stanford Institute for Theoretical Physics for support and hospitality, Indeed a home away from home, during multiple visits when we worked closely together.

A.V.P. wil in het bijzonder zijn moeder bedanken voor de sterkte en voortdurende steun die hij van haar gekregen heeft. He also thanks Marleen and Laura for the strong support during the work on this book. D.Z.F. thanks his wife Miriam for her encouragement to start this project and continuous support as it evolved.