Contents

List of Figures page xvii
List of Tables xxi

1. Introduction 1
 1.1 Intent of This Book 2
 1.2 Software and Data 2
 1.3 Structure of the Book 3
 1.3.1 Section I: Rationale 3
 1.3.2 Section II: Methods 3
 1.3.3 Section III: Applications 4
 1.3.4 Section IV: Future 5
 1.4 How To Read This Book 5
 1.5 Assumed Knowledge of Social Network Analysis 6

SECTION I: RATIONALE

2. What Are Exponential Random Graph Models? 9
 2.1 Exponential Random Graph Models: A Short Definition 9
 2.2 ERGM Theory 10
 2.3 Brief History of ERGMs 12
 2.4 Network Data Amenable to ERGMs 14

3. Formation of Social Network Structure 16
 3.1 Tie Formation: Emergence of Structure 16
 3.1.1 Formation of Social Ties 16
 3.1.2 Network Configurations: Consequential Network Patterns and Related Processes 17
 3.1.3 Local Network Processes 19
 3.1.4 Dependency (and Theories of Network Dependence) 19
3.1.5 Complex Combination of Multiple and Nested Social Processes 21
3.2 Framework for Explanations of Tie Formation 23
3.2.1 Network Self-Organization 23
3.2.2 Individual Attributes 26
3.2.3 Exogenous Contextual Factors: Dyadic Covariates 28

4. Simplified Account of an Exponential Random Graph Model as a Statistical Model 29
4.1 Random Graphs 30
4.2 Distributions of Graphs 31
4.3 Some Basic Ideas about Statistical Modeling 34
4.4 Homogeneity 35

5. Example Exponential Random Graph Model Analysis 37
5.1 Applied ERGM Example: Communication in “The Corporation” 37
5.2 ERGM Model and Interpretation 41
5.2.1 Multiple Explanations for Network Structure 45

SECTION II. METHODS
6. Exponential Random Graph Model Fundamentals 49
6.1 Chapter Outline 49
6.2 Network Tie-Variables 49
6.3 Notion of Independence 51
6.4 ERGMs from Generalized Linear Model Perspective 52
6.5 Possible Forms of Dependence 56
6.5.1 Bernoulli Assumption 56
6.5.2 Dyad-Independent Assumption 56
6.5.3 Markov Dependence Assumption 57
6.5.4 Realization-Dependent Models 57
6.6 Different Classes of Model Specifications 58
6.6.1 Bernoulli Model 58
6.6.2 Dyadic Independence Models 59
6.6.3 Markov Model 60
6.6.4 Social Circuit Models 69
6.7 Other Model Specifications 75
6.8 Conclusion 76

7. Dependence Graphs and Sufficient Statistics 77
7.1 Chapter Outline 77
7.2 Dependence Graph 78
7.2.1 Hammersley-Clifford Theorem and Sufficient Statistics 82
7.2.2 Sufficient Subgraphs for Nondirected Graphs 83
Table of Contents

7.3 Dependence Graphs Involving Attributes

7.4 Conclusion

8. Social Selection, Dyadic Covariates, and Geospatial Effects

8.1 Individual, Dyadic, and Other Attributes

8.2 ERGM Social Selection Models

8.2.1 Models for Undirected Networks

8.2.2 Models for Directed Networks

8.2.3 Conditional Odds Ratios

8.3 Dyadic Covariates

8.4 Geospatial Effects

8.5 Conclusion

9. Autologistic Actor Attribute Models

9.1 Social Influence Models

9.2 Extending ERGMs to Distribution of Actor Attributes

9.3 Possible Forms of Dependence

9.3.1 Independent Attribute Assumption

9.3.2 Network-Dependent Assumptions

9.3.3 Network-Attribute–Dependent Assumptions

9.3.4 Covariate-Dependent Assumptions

9.4 Different Model Specifications and Their Interpretation

9.4.1 Independence Models

9.4.2 Network Position Effects Models

9.4.3 Network-Attribute Effects Models

9.4.4 Covariate Effects Models

9.5 Conclusion

10. Exponential Random Graph Model Extensions: Models for Multiple Networks and Bipartite Networks

10.1 Multiple Networks

10.1.1 ERGMs for Analyzing Two Networks

10.1.2 ERGM Specifications for Two Networks

10.2 Bipartite Networks

10.2.1 Bipartite Network Representation and Special Features

10.2.2 ERGM Specifications for Bipartite Networks

10.2.3 Additional Issues for Bipartite Networks

11. Longitudinal Models

11.1 Network Dynamics

11.2 Data Structure

11.3 Model

11.3.1 Continuous-Time Markov Chain

11.3.2 Tie-Oriented Dynamics

11.3.3 Definition of Dynamic Process

© in this web service Cambridge University Press
www.cambridge.org
Contents

11.3.4 Stationary Distribution 134
11.3.5 Estimation Based on Changes 135
11.3.6 Configurations for Networks 136
11.4 Relations to Other Models 137
11.4.1 Reciprocity Model as Precursor 137
11.4.2 Stochastic Actor-Oriented Models as Alternatives 138
11.5 Conclusion 139
12. Simulation, Estimation, and Goodness of Fit 141
12.1 Exploring and Relating Model to Data in Practice 141
12.2 Simulation: Obtaining Distribution of Graphs for a Given ERGM 142
12.2.1 Sampling Graphs Using Markov Chain Monte Carlo 142
12.2.2 Metropolis Algorithm 146
12.3 Estimation 147
12.3.1 Maximum Likelihood Principle 147
12.3.2 Curved ERGMs 147
12.3.3 Bayesian Inference 148
12.4 Solving the Likelihood Equation 149
12.4.1 Importance Sampling: Geyer-Thompson Approach 149
12.4.2 Stochastic Approximation: Robbins-Monro Algorithm 151
12.4.3 Modifications for Longitudinal Model 154
12.5 Testing Effects 156
12.5.1 Approximate Wald Test 157
12.5.2 Alternative Tests 158
12.5.3 Evaluating Log-Likelihood 160
12.6 Degeneracy and Near-Degeneracy 160
12.7 Missing or Partially Observed Data 162
12.8 Conditional Estimation from Snowball Samples 163
12.9 Goodness of Fit 165
12.9.1 Approximate Bayesian GOF 166
13. Illustrations: Simulation, Estimation, and Goodness of Fit 167
13.1 Simulation 167
13.1.1 Triangulation 168
13.1.2 Degrees 171
13.1.3 Stars and Triangles Together 172
13.2 Estimation and Model Specification 174
13.2.1 Some Example Model Specifications 176
13.3 GOF 179
Contents

13.3.1 How Do You Know Whether You Have a Good Model? 179
13.3.2 What If Your Model Does Not Fit a Graph Feature? 184
13.3.3 Should a Model Explain Everything? 184

SECTION III. APPLICATIONS

14. Personal Attitudes, Perceived Attitudes, and Social Structures: A Social Selection Model 189
 14.1 Perceptions of Others and Social Behavior 189
 14.2 Data and Measures
 14.2.1 Social Network Questions 191
 14.2.2 Attribute Measures 192
 14.2.3 Analyses 193
 14.2.4 Goodness of Fit 193
 14.3 Model Specification
 14.3.1 Purely Structural Effects 194
 14.3.2 Actor-Relation Effects 194
 14.3.3 Covariate Network Effects 194
 14.4 Results
 14.4.1 Example 1: Schoolboys 196
 14.4.2 Example 2: Football Team 199
 14.5 Discussion 200

15. How To Close a Hole: Exploring Alternative Closure Mechanisms in Interorganizational Networks 202
 15.1 Mechanisms of Network Closure 202
 15.2 Data and Measures
 15.2.1 Setting and Data 205
 15.3 Model Specification 207
 15.4 Results 208
 15.5 Discussion 210

16. Interdependencies between Working Relations: Multivariate ERGMs for Advice and Satisfaction 213
 16.1 Multirelational Networks in Organizations 213
 16.2 Data, Measures, and Analyses 215
 16.3 Descriptive Results 216
 16.4 Multivariate ERGM Results
 16.4.1 Low-AS Bank 219
 16.4.2 High-AS Bank 222
 16.5 Discussion 224

17. Brain, Brawn, or Optimism? Structure and Correlates of Emergent Military Leadership 226
 17.1 Emergent Leadership in Military Context 226
17.1.1 Antecedents to Emergent Leadership 226
17.1.2 Structure of Emergent Leadership 228
17.1.3 Setting and Participants 229

17.2 Model Specification 231
17.2.1 Modeling Issues 231
17.2.2 Purely Structural Effects 231
17.2.3 Actor-Relation Effects 232

17.3 Results 232
17.3.1 Results for Purely Structural Effects 232
17.3.2 Results for Actor-Relation Effects 234

17.4 Discussion 235

18. Autologistic Actor Attribute Model Analysis of Unemployment: Dual Importance of Who You Know and Where You Live 237
18.1 Unemployment: Location and Connections 237
18.2 Data, Analysis, and Estimation 239
18.2.1 Data 239
18.2.2 Analysis 242
18.2.3 Estimation 243

18.3 Results 244
18.4 Discussion 246

19. Longitudinal Changes in Face-to-Face and Text Message–Mediated Friendship Networks 248
19.1 Evolution of Friendship Networks, Communication Media, and Psychological Dispositions 248
19.2 Data and Measures 251
19.2.1 Social Network Questions 251
19.2.2 Actor-Relation Measures 251
19.2.3 Analyses 252

19.3 Model Specification 252
19.4 Results 252
19.4.1 Results for Face-to-Face Superficial Networks 253
19.4.2 Results for Face-to-Face Self-Disclosing Networks 254
19.4.3 Results for Text Message–Mediated Superficial Networks 255
19.4.4 Results for Text Message–Mediated Self-Disclosing Networks 255

19.5 Discussion 256

20.1 Bipartite Society: The Individual and the Group 260
20.1.1 Director Capital and Interlock Formation 261
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2</td>
<td>Data and Measures</td>
<td></td>
</tr>
<tr>
<td>20.2.1</td>
<td>Social Network Data</td>
<td>262</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Actor-Relation Measures</td>
<td>263</td>
</tr>
<tr>
<td>20.2.3</td>
<td>Analyses</td>
<td>264</td>
</tr>
<tr>
<td>20.3</td>
<td>Model Specification</td>
<td></td>
</tr>
<tr>
<td>20.3.1</td>
<td>Independent Bivariate Attribute Analysis</td>
<td>266</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Purely Structural Effects</td>
<td>266</td>
</tr>
<tr>
<td>20.3.3</td>
<td>Models with Attributes: Actor-Relation Effects</td>
<td>266</td>
</tr>
<tr>
<td>20.4</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>20.4.1</td>
<td>Results for Independent Bivariate Analysis</td>
<td>267</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Results for Purely Structural Effects</td>
<td>267</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Results for Models Including Purely Structural and Actor-Relation Effects</td>
<td>268</td>
</tr>
<tr>
<td>20.5</td>
<td>Discussion</td>
<td>270</td>
</tr>
<tr>
<td>21.</td>
<td>Comparing Networks: Structural Correspondence between Behavioral and Recall Networks</td>
<td>272</td>
</tr>
<tr>
<td>21.1</td>
<td>Relationship between Behavior and Recall</td>
<td>272</td>
</tr>
<tr>
<td>21.2</td>
<td>Data and Measures</td>
<td>273</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Description of Networks</td>
<td>273</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Data Transformations</td>
<td>274</td>
</tr>
<tr>
<td>21.2.3</td>
<td>Model Specification</td>
<td>274</td>
</tr>
<tr>
<td>21.3</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>21.3.1</td>
<td>Visualization</td>
<td>275</td>
</tr>
<tr>
<td>21.4</td>
<td>Preliminary Statistical Analysis</td>
<td>277</td>
</tr>
<tr>
<td>21.5</td>
<td>Univariate Models</td>
<td>277</td>
</tr>
<tr>
<td>21.6</td>
<td>Models of Recall Networks with Behavioral Networks as Covariates</td>
<td>278</td>
</tr>
<tr>
<td>21.7</td>
<td>Multivariate Models</td>
<td>280</td>
</tr>
<tr>
<td>21.8</td>
<td>Discussion</td>
<td>282</td>
</tr>
<tr>
<td>SECTION IV. FUTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Modeling Social Networks: Next Steps</td>
<td>287</td>
</tr>
<tr>
<td>22.1</td>
<td>Distinctive Features of ERGMs</td>
<td>287</td>
</tr>
<tr>
<td>22.2</td>
<td>Model Specification</td>
<td>289</td>
</tr>
<tr>
<td>22.2.1</td>
<td>Dependence Hierarchy</td>
<td>291</td>
</tr>
<tr>
<td>22.2.2</td>
<td>Building Model Specifications</td>
<td>296</td>
</tr>
<tr>
<td>22.2.3</td>
<td>Models with Latent Variables: Hybrid Forms</td>
<td>297</td>
</tr>
<tr>
<td>22.2.4</td>
<td>Assessing Homogeneity Assumptions</td>
<td>299</td>
</tr>
<tr>
<td>22.3</td>
<td>General Issues for ERGMs</td>
<td>299</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>327</td>
</tr>
<tr>
<td>Name Index</td>
<td></td>
<td>331</td>
</tr>
</tbody>
</table>
List of Figures

3.1. Some network configurations and their underlying social processes. page 18
3.2. Nested configurations for a transitive triad. 22
3.3. Conceptual framework for processes of social tie formation discussed in this book. 24
3.4. Examples of network configurations for actor-relation effects. 27
3.5. Example of network configurations for dyadic covariates. 28
4.1. (a) Simple random network and (b) empirical communication network. 30
4.2. Distribution of reciprocated arcs from sample of 1,000 random graphs. 32
5.1. Communication network of The Corporation. 38
5.2. Mutual ties only (asymmetric ties removed) in communication network. 39
5.3. Communication network with employee experience represented by size. 40
5.4. Communication network with seniority. 40
5.5. Communication network with office membership represented by shape. 41
5.6. Multiplex communication and advice ties (all other ties removed). 42
6.1. (a) Network variables of X and (b) a realization x for network on four vertices. 50
6.2. Social circuit dependence. 58
6.3. Configurations in 2-star model. 60
6.4. Configurations with three edges: 3-star and triangle. 61
6.5. Expected and 95% intervals for number of edges and triangles as function of triangle parameter in Markov model. 63
List of Figures

6.6. Number of triangles for Markov model. 65
6.7. Directed star configurations on three nodes. 67
6.8. Configurations on three vertices with exactly one tie for each dyad. 68
6.9. (a) Alternating triangles on base \((i, j)\) and (b) independent 2-paths. 70
6.10. Configurations for directed graphs in alternating forms (a) AT-T and (b) A2P-T. 72
6.11. Additional triadic configurations for directed graphs in alternating forms (a) AT-U, (b) AT-D, and (c) AT-C. 73
6.12. Additional 2-path configurations for directed graphs in alternating forms (a) A2P-U and (b) A2P-D. 73
6.13. Configurations associated with brokerage. 75
7.1. Tie-variables of (a) four-node graph and (b) associated Bernoulli dependence graph. 78
7.2. Tie-variables of (a) four-node graph and (b) associated Markov dependence graph. 79
7.3. Tie-variables of social circuit graph and its dependence graph and dependence graph conditional on some tie-variables being zero. 80
7.4. Singleton clique in dependence graph and corresponding configuration in \(X\). 84
7.5. Three-clique in dependence graph and corresponding 3-star configuration in \(X\). 84
7.6. Three-clique in dependence graph and corresponding triangle configuration in \(X\). 85
7.7. Tie-variables for directed graph on four vertices with corresponding Markov dependence graph. 88
7.8. Sufficient subgraphs for directed Markov graph on four vertices. 89
10.1. Cross-network dyadic configurations. 117
10.2. Cross-network 2-star effects. 118
10.3. Cross-network triangle effects. 119
10.4. Cross-network social circuit effects. 119
10.5. Cross-network dyadic attribute effects. 120
10.6. A \((5, 6)\) bipartite network. 121
10.7. Bipartite 3-path and 4-cycle. 122
10.8. Bipartite star configurations. 123
10.9. Four-cycle dependence assumption. 124
10.10. Three-path dependence assumption. 124
10.11. Alternating 2-paths. 125
10.12. Attribute activity effects. 125
10.13. Two-star attribute effects. 126
10.14. Four-cycle attribute effects. 127
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.15</td>
<td>Dyadic between-set configurations.</td>
</tr>
<tr>
<td>12.1</td>
<td>Distribution of edges and alternating triangles for Kapferer’s (1972) data.</td>
</tr>
<tr>
<td>12.2</td>
<td>Number of edges in sequence of graphs in Markov chain.</td>
</tr>
<tr>
<td>12.3</td>
<td>Number of edges against alternating triangles for sequence of graphs in Markov chain.</td>
</tr>
<tr>
<td>12.4</td>
<td>Robbins-Monro algorithm for network on $n = 20$ actors.</td>
</tr>
<tr>
<td>12.5</td>
<td>Graph on seven vertices with five edges.</td>
</tr>
<tr>
<td>12.6</td>
<td>Zones of order 0 through 3 for seed node a.</td>
</tr>
<tr>
<td>13.1</td>
<td>Simple random graph with thirty nodes and forty-three edges.</td>
</tr>
<tr>
<td>13.2</td>
<td>Graphs from simulations with different triangulation parameters.</td>
</tr>
<tr>
<td>13.3</td>
<td>Example graph for massive alternating triangle parameter.</td>
</tr>
<tr>
<td>13.4</td>
<td>Example graphs for alternating triangle parameters with different λs.</td>
</tr>
<tr>
<td>13.5</td>
<td>Simulation results for alternating star parameter.</td>
</tr>
<tr>
<td>13.6</td>
<td>Example graphs from simulations with both alternating and Markov star parameters.</td>
</tr>
<tr>
<td>13.7</td>
<td>Example graph from simulation with positive triangle and negative star parameters.</td>
</tr>
<tr>
<td>15.1</td>
<td>Local configurations of network ties representing different closure mechanisms: (a) path closure, (b) activity closure, (c) popularity closure, and (d) cyclic closure.</td>
</tr>
<tr>
<td>15.2</td>
<td>Network structure of interhospital patient mobility.</td>
</tr>
<tr>
<td>16.1</td>
<td>Advice-giving and satisfaction network in Low-AS bank branch.</td>
</tr>
<tr>
<td>16.2</td>
<td>Advice-giving and satisfaction network in High-AS bank branch.</td>
</tr>
<tr>
<td>18.1</td>
<td>Process of constructing augmented network.</td>
</tr>
<tr>
<td>18.2</td>
<td>Employment status and social connections.</td>
</tr>
<tr>
<td>18.3</td>
<td>Geographic distribution of employed and unemployed individuals.</td>
</tr>
<tr>
<td>18.4</td>
<td>Number of participants by wave.</td>
</tr>
<tr>
<td>19.1</td>
<td>Triadic configurations used in models.</td>
</tr>
<tr>
<td>21.1</td>
<td>Visualization of four pairs of networks.</td>
</tr>
<tr>
<td>22.1</td>
<td>Hierarchy of dependence structures.</td>
</tr>
</tbody>
</table>
List of Tables

4.1. Selected network statistics for networks in Figure 4.1 page 31
5.1. ERGM parameter estimates (and standard errors) for communication relations in The Corporation 43
6.1. Two independent tie-variables 51
6.2. Two dependent tie-variables 52
8.1. Some social selection configurations for undirected networks 94
8.2. Some social selection configurations for directed networks 95
8.3. Dyadic covariate configurations for ERGMs 99
9.1. Network position configurations, statistics, and parameters 110
9.2. Network-attribute configurations, statistics, and parameters 111
9.3. Covariate effects configurations, statistics, and parameters 112
13.1. Suggested starting set of parameters for ERGM for positive affect networks 175
13.2. Three models for The Corporation communication network 177
13.3. Selected goodness-of-fit (GOF) details for communication network 180
14.1. Two models for positive affect relations among schoolboys 195
14.2. Two models for aggression relations among the footballers 196
15.1. ERGM estimates of structural and actor-relation effects on the presence of patient transfers between hospitals 209
16.1. Descriptive statistics of two bank branches 218
16.2. Model estimates for Low-AS bank advice-giving and satisfaction network 220
List of Tables

16.3. Model estimates for High-AS bank advice-giving and satisfaction network 223
17.1. Parameter estimates for two models examining emergent leadership among recruits in military training 233
18.1. Descriptive statistics 241
18.2. ALAAM estimates (and SEs) for predicting unemployment using network, geospatial, and actor attribute effects 245
19.1. Parameter estimates and standard errors in face-to-face friendship networks 253
19.2. Parameter estimates and standard errors in text message–mediated friendship networks 254
20.1. Summary statistics for attributes and attribute interactions 265
20.2. Results of two bipartite ERGMs of directorships including only purely structural effects 268
20.3. Two bipartite ERGM of directorships, with structural, actor relation, and actor relation interaction effects 269
21.1. Overview of four different networks 274
21.2. Descriptive statistics of four networks for behavior and recall 277
21.3. Univariate ERGM parameter estimates (SEs) for four data sets 278
21.4. Parameter estimates (SEs) for four recall networks (with behavioral network included as covariate network) 279
21.5. Multivariate ERGM parameter estimates (SE) for four data sets 280