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A few well-known basic results

This chapter is just a reminder of some basic results concerning equilibrium

statistical mechanics and of a few algebraic techniques used in this book.

1.1 The Boltzmann law

For a system at equilibrium in contact with a heat bath (or thermostat) at tempera-

ture T , the configurations of the particles and the total energy are random variables.

The equilibrium probability distribution for N identical particles confined in a box

of volume V , whose dynamics are governed by a Hamiltonian H , is given by the

Boltzmann–Gibbs distribution

Ã =
1

Z
e2³H , (1.1)

in which ³ is related to the temperature by

³ =
1

kT
. (1.2)

1.1.1 The classical canonical ensemble

For classical particles, in three dimensions, Ã is a probability measure in the 6N -

dimensional phase space (pa, qa), a = 1 . . . 3N and the expectation value of an

observable A(p, q) is given by

�A� =
�

dÇ A(p, q)Ã(p, q), (1.3)

in which dÇ is the measure dÇ = 1

h3N
1
N !
�3N

1 dpadqa. The integrals over the

positions qa are such that every particle is confined in a box of volume V .

The factor 1/h3N , in which h has the dimension of an action (i.e., M L2T 21),

makes dÇ dimensionless. Any constant with that dimension would work but the
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2 A few well-known basic results

classical limit of quantum statistical mechanics provides Planck’s constant,

h = 2Ã�.

The factor 1/N ! is also of quantum origin: Pauli’s principle allows only for one-

dimensional representations of the permutation group of N particles, completely

symmetric (bosons) or completely antisymmetric (fermions). This selects only one

state out of the degenerate N ! states obtained by permutations of one of them.

The normalization is fixed by �1� = 1, which gives the partition function Z :

Z(³, N , V ) =
�

dÇe2³H . (1.4)

1.1.2 The quantum canonical ensemble

The density matrix Ã, given by (1.1), is an operator in the Hilbert space of symmet-

ric states for integer spin particles, or antisymmetric states for half-integer spins, for

N particles confined in a box of volume V . The expectation value of an observable

A is given by

�A� = Tr(ÃA) =
1

Z
TrAe2³H (1.5)

and thus the partition function is given by

Z(³, N , V ) = Tr e2³H . (1.6)

If the eigenvalues of the N -body Hamiltonian are labelled as Ei , then

Z =
�

i

e2³Ei . (1.7)

If the energy Ei has a degeneracy wi then

Z =
�

�

e2³(Ei 2T Si ), (1.8)

in which Si = k logwi and the last sum runs over distinct energies. This expression

shows that the dominant contributions are those that minimize the combination

E 2 T S, a competition between energy and entropy to which we shall return in the

next section.

Exercise 1

Quantum effects arise when the typical de Broglie wavelength associated with a

particle becomes comparable to the interparticle distance. Estimate the tempera-

ture below which quantum effects should be taken into account for a gas of nitrogen

of atmospheric density.
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1.2 Thermodynamics from statistical physics 3

1.1.3 The grand canonical ensemble

If the system, in contact with a heat bath, can also exchange particles with a reser-

voir at temperature T and chemical potential ¿, the number of particles is also a

random variable. In the simple case in which the Hamiltonian HN does not change

the number of particles, the probability distribution is given by a collection of ÃN

given by

ÃN =
1

ZG

e³N2³HN , (1.9)

with

¿ =
³

³
, (1.10)

normalized by

ZG(³, ³, V ) =
�

N

e³N Tr e2³HN ,

in which V is the volume of the box in which the particles are confined. (If the

Hamiltonian does not conserve the number of particles, it is necessary to use the

Fock space; this will not be needed within these lectures.)

1.2 Thermodynamics from statistical physics

The canonical free energy is given by

F(³, N , V ) = 2
1

³
log Z . (1.11)

Exercise 2

Show that the pressure, the entropy and the chemical potential of the system can all

be related to the partition function. Compute the partition function for a classical

gas of non-interacting particles.

1.2.1 The thermodynamic limit

The thermodynamic limit is the limit in which N and V go to infinity with a fixed

ratio ¿ = N/V . In this limit one can show that, for particles with short-range

interactions, the canonical log Z , and thus F are extensive, namely

lim
N³>,V ³>

"

"

"

"

N/V =¿

"

1

N
log Z

"

(1.12)

exists and is a function of the two intensive variables ¿ and ³. Similarly, for the

grand canonical ensemble, limV ³> 1/V log ZG exists and is a function of the

intensive variables, temperature and chemical potential.
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4 A few well-known basic results

Exercise 3

Verify this extensivity for N free classical particles in a box. Reminder: Stirling’s

formula N ! =
:

2ÃN
"

N
e

"N "

1 + O
"

1
N

""

.

For charged particles, such as electrons with Coulomb interactions, the ther-

modynamic limit exists, provided that (a) the system is neutral, i.e., the charge

of the ions compensates the charge of the electrons, (b) the system is quantum

mechanical, (c) Pauli’s principle is taken into account.1

Exercise 4

Assume that the potential energy of N interacting classical particles is a homoge-

neous function

V (»q1 · · · »q3N ) = |»|s V (q1 · · · q3N ).

Show that the pressure p(¿, T ), where ¿ = N/V , satisfies the relation

p(¿, T ) = T 123/s×(¿T 3/s).

Assume that at low temperature T0 the isotherm in the (p, V ) plane presents a

phase transition between two phases of different densities. Can there be a critical

point for this phase transition, i.e., a temperature at which the transition between

the two phases disappears?

1.3 Gaussian integrals and Wick’s theorem

1. One variable
� +>

2>
dxe2 1

2 ax2 =
�

2Ã

a
. (1.13)

2. n variables
�

Rn

dx1 · · · dxne2 1
2

�

xi Ai j x j =
(2Ã)n/2
:

det A
. (1.14)

A = At is here a real symmetric matrix with positive eigenvalues. It can thus be diag-

onalized by an orthogonal transformationË, i.e., A = Ët DË, in which D is the diagonal

matrix of the eigenvalues (a1, . . . , an) of A. The change of variables Ëx = y whose

Jacobian (| detË|21) is equal to one, leads to the solution.

3. n variables in a source
�

Rn dx1 · · · dxne2 1
2

�

xi Ai j x j +
�

bi xi

�

Rn dx1 · · · dxne2 1
2

�

xi Ai j x j

= e
1
2

�

bi A21
i j b j . (1.15)

Translate x = y + A21b .

1 J. Lebowitz and E. Lieb, Phys. Rev. Lett., 22 (1969) 631.
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1.3 Gaussian integrals and Wick’s theorem 5

4. Wick’s theorem

Apply to (1.15) the operation "
"bi1

· · · "
"bi2n

and then set all the bi = 0. The l.h.s. gives

"

xi1
· · · xi2n

"

=
�

Rn dx1 · · · dxne2 1
2

�

xi Ai j x j xi1
· · · xi2n

�

Rn dx1 · · · dxne2 1
2

�

xi Ai j x j

. (1.16)

Applying this to the r.h.s. of (1.15) we can limit ourselves to the term 1
(n)!2n ×

�

�

bi A21
i j b j

�n

; indeed terms of lower degree in the expansion of the exponential will

give zero by differentiation; terms of higher degree will give zero because they are left

with b and vanish at b = 0. Therefore,

"

xi1
· · · xi2n

"

=
"

"bi1

· · ·
"

"bi2n

1

(n)!2n

�

�

bi A21
i j b j

�n

. (1.17)

Define a complete pairing of the "
"b

such that each "
"bi

has a partner. For this particular

pairing, the two paired differentiations go to the same
�

, but there are n! ways of

associating the sums and the chosen pairing. Once this association is made, one has

simply to note that

"

"bk

"

"bl

�

bi A21
i j b j = 2A21

kl .

Therefore the n!2n cancels and we are left with the result, known as Wick’s theorem,

for Gaussian integrals.
"

xi1
· · · xi2n

"

=
�

pairings

�

each
pair

A21
ia ib
. (1.18)

Exercise

Compute the integral

I =
�

R2 dxdy x4 y2e2(x2+xy+2y2)

�

R2 dxdye2(x2+xy+2y2)
.

Answer

I =
144

343
,

since

I = 3(�xx�)2�yy� + 12�xx�(�xy�)2,

in which

�xx� = A21
11 �xy� = A21

12 �yy� = A21
22 ,

with

A =
"

2 1

1 4

"

A21 =
1

7

"

4 21

21 2

"

.
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6 A few well-known basic results

1.4 Functional derivatives

A functional F{ f } is an application from a space of functions f to a complex or

real number F . For instance the action integral for the motion of a particle, located

at the position q(t) at time t , with potential energy V (q) is the functional of the

trajectory given by

S{q} =
� t2

t1

dt
�m

2
Ûq2 2 V (q)

�

. (1.19)

Let us work with functions f of a single real variable x (the generalization to

functions of more variables is immediate). The derivative of the functional with

respect to f (x) at x = x0 is defined as follows. Let us consider an increment

�··(x 2 x0); the function ··(x) is centred at the origin, and it has a width ·; it is

normalized to one, i.e.,
�

R
··(x)dx = 1. When · goes to this zero, this increment

approaches the Dirac distribution ·(x). (For instance ··(x) = 1

·
:

2Ã
e2x2/2·2

.) One

computes next the increment of the functional

�F = F{ f + �··(x 2 x0)} 2 F{ f }. (1.20)

The functional derivative of F at x0 is defined as

·F

· f

"

"

"

"

x0

= lim
·³0

lim
�³0

�F

�
. (1.21)

The limits have to be taken in the order indicated: if we let � go to zero first, we

avoid non-linearities in ··. In the opposite order we would encounter powers of ··,

which do not have a limit when · goes to zero.

Let us apply this to the above action functional:

lim
�³0

1

�
[S{q(t) + �··(t 2 t0)} 2 S{q}]

=
� t2

t1

dt[m Ûq Û··(t 2 t0)2 V �(q)··(t 2 t0)]. (1.22)

After an integration by parts of the first term one ends up with

·S

·q
(t0) = 2mq̈(t0)2 V �(q(t0)) (1.23)

and Newton’s law is just given by the vanishing of this functional derivative for

any t0: the action is stationary (in fact a minimum) for the classical trajectory.

1.5 d-dimensional integrals

The rules are simple but they may surprise the reader who sees them for the first

time. Whenever the dimension d is an integer, the d-dimensional integral is the
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1.5 d-dimensional integrals 7

ordinary integral over the whole space Rd . But, for arbitrary d, one applies the

following rules:

(a)
�

ddq f (q + p) =
�

ddq f (q),

(b)
�

ddq f (»q) = |»|2d
�

ddq f (q).

If q1 is a d1-dimensional vector and q2 is a d2-dimensional vector and

f (q)= g1(q1)g2(q2) with d = d1 + d2, then

(c)
�

ddq f (q) =
�

dd1q1g1(q1)
�

dd2q2g2(q2).

Consequences:

" From (b) the only finite solution to an integral, such as
�

ddq(q2)k is

�

ddq(q2)k = 0

for any positive or negative real number k, including k = 0. Note that this integral never

exists as an ordinary integral for integer dimensions. The consistency of this rule will be

checked below.

" The same would apply to any scale-invariant integral, such as

�

ddq1ddq2(q
2
1 )

k
�

(q1 + q2)
2
�l

= 0.

" From (c)

�

ddq e2q2 =
 � +>

2>
dxe2x2

 d

= Ãd/2.

Let us use these rules to calculate simple integrals:

�

ddq(q2 + 1)2k =
1

 (k)

�

ddq

� >

0

e2»(q2+1)»k21d»

=
Ãd/2

 (k)

� >

0

d»»k2d/221e2» =
Ãd/2 (k 2 d/2)

 (k)
.

One can also compute this integral in ‘spherical’ coordinates:

�

ddq(q2 + 1)2k =
2Ãd/2

 (d/2)

� >

0

dx xd21 1

(x2 + 1)k

=
2Ãd/2

 (d/2)

1

2

� 1

0

dy yk2d/221(1 2 y)d/221

=
Ãd/2 (k 2 d/2)

 (k)

www.cambridge.org/9780521193030
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-19303-0 — Introduction to Statistical Field Theory
Edouard Brézin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 A few well-known basic results

(change 1/(1 + x2) = y). It is easy to verify on examples, such as d = 3 and k = 2,

that whenever the integral exists in the ordinary sense it is indeed given by this

result.

To check the consistency of rule (b) let us compute

J =
�

ddq
1

q2(q2 + 1)
.

If we use spherical coordinates,

J =
2Ãd/2

 (d/2)

� >

0

dx xd23 1

x2 + 1
=

2Ãd/2

 (d/2)

1

2

� 1

0

dy y12d/2(1 2 y)d/222

=
Ãd/2

 (d/2)
 (2 2 d/2) (d/2 2 1).

It is easy to verify that, for d = 3, J exists as an ordinary integral and is indeed

given by this result. Alternatively, using the identity 1

q2(q2+1)
= 1

q2 2 1

q2+1
, we find,

from rule (b) and the above k = 1 result,

J = 0 2 Ãd/2 (1 2 d/2),

and it is easy to check that this coincides with the above result for J .

Additional references

Shang-Keng Ma, Statistical Mechanics, (Singapore: World Scientific, 1998).
L. P. Kadanoff, Statistical Physics, Statics, Dynamics and Renormalization, (Singapore:

World Scientific, 2000).

On the existence of the thermodynamic limit:

David Ruelle, Statistical Mechanics: Rigorous results, (New York: Benjamin, 1969).
Kerson Huang, Statistical Mechanics, (New York: Wiley, 1963), Appendix C.
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Introduction: order parameters, broken

symmetries

2.1 Can statistical mechanics be used to describe phase transitions?

A phenomenological description of a phase transition does not raise any spe-

cial difficulty a priori. For instance, to describe the solidification of a gas under

pressure, one can make a simple theory for the gaseous phase, e.g., an ideal gas

corrected by a few terms of the virial expansion. Then, for the solid, one can use

the extraction energies of the atoms, and the vibration energies around equilib-

rium positions. These calculations will provide a thermodynamic potential for each

phase. The line of coexistence between the two phases in the pressure–temperature

plane will be determined by imposing the equality of the two chemical potentials

¿I (T, P) = ¿I I (T, P).

If this method may turn out to be useful in practice, it does not answer any

of the questions that one can raise concerning the transition between the two

states. Indeed the interactions between the molecules are not statistical in nature:

they are independent of the temperature, or of the pressure; the Hamiltonian is

a combination of kinetic energy and well-defined interaction potentials between

pairs of molecules. How can one see in such a description, following the prin-

ciples established by Boltzmann, Gibbs and their successors, that at equilibrium

the same molecules can form a solid or a fluid, a superconductor, a ferromag-

net, etc., without any modification of the interactions? It is so far from obvious

that, for a long time, some believed that the principles of statistical mechanics had

to be completed to allow for the possibility of a phase transition. It is only after

Peierls’ 1936 work (which will be reviewed below)1 and Onsager’s2 solution of

the two-dimensional Ising model, that it became manifest that the ordinary prin-

ciples of statistical mechanics contained the possibility of phase transitions and

1 R. Peierls, Proc. Cambridge Phil. Soc., 32 (1936) 477.
2 L. Onsager, Crystal statistics: a two-dimensional model with an order–disorder transition, Phys. Rev., 65

(1944) 117.
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10 Introduction: order parameters, broken symmetries

critical points. (A critical point is the endpoint of a line of coexistence between

two phases, such as the endpoint of the liquid–vapour line of coexistence in the

(p, T ) plane. Beyond this point there is only one phase, the fluid phase.)

These same contributions also demonstrated how singularities, such as discon-

tinuities, or divergences of physical quantities at critical points, could arise in

statistical mechanics, whereas one could have thought, a priori, that they were not

possible. Indeed the thermodynamic properties are determined by the knowledge

of the free energy, proportional to log Z , with

Z =
�

C

e2³E(C). (2.1)

Each term of the sum is analytic in the temperature (except at zero temperature).

Assuming that there is a finite number of distinct configurations, as will be the

case in many situations that we are going to study, such as the Ising model, then the

partition function is analytic in T , as well as the free energy F = 2kT log Z , unless

Z vanishes. But Z does not vanish for real values of T , and thus F is non-singular

on the real temperature axis. One can thus conclude that singularities cannot exist

at any real non-zero temperature: in other words, phase transitions do not exist!

We shall see that the solution to this paradox is that the number N of constituents

is so large that one almost always observes experimentally only the thermodynamic

limit and the simplistic argument that I have just used fails in that limit.

2.2 The order–disorder competition

To make the discussion more concrete, I shall introduce immediately the Ising

model, whose physical significance will be explained in the next section. We con-

sider a periodic lattice with N sites in dimension d. To each site i one attaches a

‘spin’:

Ãi = ±1 (2.2)

(for a true spin this would be simply the eigenvalues of one component of a spin 1
2
,

up to a factor �/2). Therefore, there are 2N configurations C

C = (Ã1, . . . , ÃN ). (2.3)

We now have to define the energy of a configuration C. In the simplest model

introduced by Ising, a student of Lenz, in 1925,3 one assumes that only pairs of

3 Ising solved the model in one dimension, in which there is no phase transition and conjectured (erroneously)
on that basis that the model could not describe a phase transition.
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