
1 Introduction

1.1 Introduction to the Book

To solve increasingly complicated open research problems, it is crucial to develop useful
mathematical tools. Often, the task of a researcher or an engineer is to find the optimal
values of unknown parameters that can be represented by complex-valued matrices. One
powerful tool for finding the optimal values of complex-valued matrices is to calculate
the derivatives with respect to these matrices. In this book, the main focus is on complex-
valued matrix calculus because the theory of real-valued matrix derivatives has been
thoroughly covered already in an excellent manner in Magnus and Neudecker (1988).
The purpose of this book is to provide an introduction to the area of complex-valued
matrix derivatives and to show how they can be applied as a tool for solving problems
in signal processing and communications.

The framework of complex-valued matrix derivatives can be used in the optimization
of systems that depend on complex design parameters in areas where the unknown
parameters are complex-valued matrices with independent components, or where they
belong to sets of matrices with certain structures. Many of the results discussed in
this book are summarized in tabular form, so that they are easily accessible. Sev-
eral examples taken from recently published material show how signal processing and
communication systems can be optimized using complex-valued matrix derivatives.
Note that the differentiation procedure is usually not sufficient to solve such problems
completely; however, it is often an essential step toward finding the solution to the
problem.

In many engineering problems, the unknown parameters are complex-valued matri-
ces, and often, the task of the system designer is to find the values of these complex
parameters, which optimize a certain scalar real-valued objective function. For solv-
ing these kinds of optimization problems, one approach is to find necessary conditions
for optimality. Chapter 3 shows that when a scalar real-valued function depends on a
complex-valued matrix variable, the necessary conditions for optimality can be found by
setting the derivative of the function with respect to the complex-valued matrix variable
or its complex conjugate to zero. It will also be shown that the direction of the maximum
rate of change of a real-valued scalar function, with respect to the complex-valued matrix
variable, is given by the derivative of the function with respect to the complex conjugate
of the complex-valued input matrix variable. This result has important applications in,
for example, complex-valued adaptive filters.
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2 Introduction

This book presents a comprehensive theory on how to obtain the derivatives of
scalar-, vector-, and matrix-valued functions with respect to complex matrix variables.
The theory of finding complex-valued matrix derivatives with respect to unpatterned
matrices is based on the complex differential of the function of interest. The method
of using differentials is substantially different from the component-wise approach.1 A
key idea when using complex differentials is to treat the differential of the complex
and the complex conjugate variables as independent. This theory will be applied to
derive useful matrix derivatives that can be used, for example, in signal processing and
communications.

The complex Hessian matrix will be defined for complex scalar, vector, and matrix
functions, and how this matrix can be obtained from the second-order differential of these
functions is shown. Hessians are useful, for example, to check whether a stationary point
is a saddle point, a local minimum, or a local maximum; Hessians can also be used to
speed up the convergence of iterative algorithms.

A systematic theory on how to find generalized complex-valued matrix derivatives
is presented. These are derivatives of complex-valued matrix functions with respect to
matrices that belong to a set of complex-valued matrices, which might contain certain
dependencies among the matrix elements. Such matrices include Hermitian, symmetric,
diagonal, skew-symmetric, and skew-Hermitian. The theory of manifolds is used to
find generalized complex-valued matrix derivatives. One key point of this theory is the
requirement that the function, which spans all matrices within the set under consideration,
is diffeomorphic; this function will be called the parameterization function. Several
examples show how to find generalized complex-valued matrix derivatives with respect
to matrices belonging to sets of matrices that are relevant for signal processing and
communications.

Various applications from signal processing and communications are presented
throughout the book. The last chapter is dedicated to various applications of complex-
valued matrix derivatives.

1.2 Motivation for the Book

Complex signals appear in many parts of signal processing and communications. Good
introductions to complex-valued signal processing can be found in Mandic and Goh
(2009) and Schreier and Scharf (2010). One area where optimization problems with
complex-valued matrices appear is digital communications, in which digital filters
may contain complex-valued coefficients (Paulraj, Nabar, & Gore 2003). Other areas
include analysis of power networks and electric circuits (González-Vázquez 1988); con-
trol theory (Alexander 1984); adaptive filters (Hanna & Mandic 2003; Diniz 2008);
resource management (Han & Liu 2008); sensitivity analysis (Fränken 1997; Tsipouri-
dou & Liavas 2008); and acoustics, optics, mechanical vibrating systems, heat con-

1 In the author’s opinion, the current approach of complex-valued matrix derivatives is preferred because it
often leads to shorter and simpler calculations.
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1.3 Brief Literature Summary 3

duction, fluid flow, and electrostatics (Kreyszig 1988). Convex optimization, in which
the unknown parameters might be complex-valued, is treated in Boyd and Vanden-
berghe (2004) and Palomar and Eldar (2010). Usually, using complex-valued matrices
leads to fewer computations and more compact expressions compared with treating the
real and imaginary parts as two independent real-valued matrices. The complex-valued
approach is general and usually easier to handle than working with the real and imag-
inary parts separately, because the complex matrix variable and its complex conjugate
should be treated as independent variables when complex-valued matrix derivatives are
calculated.

One of the main reasons why complex-valued matrix derivatives are so important
is that necessary conditions for optimality can be found through these derivatives. By
setting the complex-valued matrix derivative of the objective function equal to zero,
necessary conditions for optimality are found. The theory of complex-valued matrix
derivatives and the generalized complex-valued matrix derivatives are useful tools for
researchers and engineers interested in designing systems in which the parameters are
complex-valued matrices. The theory of generalized complex-valued matrix derivatives
is particularly suited for problems with some type of structure within the unknown matrix
of the optimization problem under consideration. Examples of such structured matri-
ces include complex-valued diagonal, symmetric, skew-symmetric, Hermitian, skew-
Hermitian, orthogonal, unitary, and positive semidefinite matrices. Finding derivatives
with respect to complex-valued structured matrices is related to the field of manifolds.
The theory of manifolds is a part of mathematics involving generalized derivatives
on special geometric constructions spanned by so-called diffeomorphic functions (i.e.,
smooth invertible functions with a smooth inverse), which map the geometric construc-
tion back to a space with independent components. Optimization over such complex-
valued constrained matrix sets can be done by using the theory of generalized matrix
derivatives.

Complex-valued matrix derivatives are often used as a tool for solving problems in
signal processing and communications. In the next section, a short overview of some of
the literature on matrix derivatives is presented.

1.3 Brief Literature Summary

An early contribution to real-valued symbolic matrix calculus is found in Dwyer and
Macphail (1948), which presents a basic treatment of matrix derivatives. Matrix deriva-
tives in multivariate analysis are presented in Dwyer (1967). Another contribution is
given in Nel (1980), which emphasizes the statistical applications of matrix derivatives.

The original work (Wirtinger 1927) showed that the complex variable and its complex
conjugate can be treated as independent variables when finding derivatives. An intro-
duction on how to find the Wirtinger calculus with respect to complex-valued scalars
and vectors can be found in Fischer (2002, Appendix A). In Brandwood (1983), a theory
is developed for finding derivatives of complex-valued scalar functions with respect to
complex-valued vectors. It is argued in Brandwood (1983) that it is better to use the
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4 Introduction

complex-valued vector and its complex conjugate as input variables instead of the real
and imaginary parts of the vector – the main reason being that the complex-valued
approach often leads to a simpler approach that requires fewer calculations than the
method that treats the real and imaginary parts explicitly. Mandic and Goh (2009, p. 20)
mention that the complex-valued representation may not always have a real physical
interpretation; however, the complex framework is general and more mathematically
tractable than working on the real and imaginary parts done separately.

An introduction to matrix derivatives, which focuses on component-wise derivatives,
and to the Kronecker product is found in Graham (1981). Moon and Stirling (2000,
Appendix E) focused on component-wise treatment of both real-valued and complex-
valued matrix derivatives. Several useful results on complex-valued matrices are col-
lected into Trees (2002, Appendix A), which also contains a few results on matrix
calculus for which a component-wise treatment was used.

Magnus and Neudecker (1988) give a very solid treatment of real-valued matrices with
independent components. However, they do not consider the case of formal derivatives,
where the differential of the complex-valued matrix and the differential of its complex
conjugate should be treated as independent; moreover, they do not treat the case of
finding derivatives with respect to complex-valued patterned matrices (i.e., matrices
containing certain structures). The problem of finding derivatives with respect to real-
valued matrices containing independent elements is well known and has been studied, for
example, in Harville (1997) and Minka (December 28, 2000). A substantial collection
of derivatives in relation to real-valued vectors and matrices can be found in Lütkepohl
(1996, Chapter 10).

Various references give brief treatments of the case of finding derivatives of real-valued
scalar functions that depend on complex-valued vectors (van den Bos 1994a; Hayes
1996, Section 2.3.10; Haykin 2002, Appendix B; Sayed 2008, Background Material,
Chapter C). A systematic and simple way to find derivatives with respect to unpatterned
complex-valued matrices is presented in Hjørungnes and Gesbert (2007a).

Two online publications (Kreutz-Delgado 2008) and (Kreutz-Delgado 2009) give an
introduction to real- and complex-valued derivatives with respect to vectors. Both first-
and second-order derivatives are studied in these references. Two Internet sites with
useful material on matrix derivatives are The Matrix Cookbook (Petersen & Pedersen
2008) and The Matrix Reference Manual (Brookes, July 25, 2009).

Hessians (second-order derivatives) of scalar functions of complex vectors are studied
in van den Bos (1994a). The theory for finding Hessian matrices of scalar complex-
valued function with respect to unpatterned complex-valued matrices and its complex
conjugate is developed in Hjørungnes and Gesbert (2007b).

The theory for finding derivatives of real-valued functions that depend on
patterned real-valued matrices is developed in Tracy and Jinadasa (1988). In
Hjørungnes and Palomar (2008b), the theory for finding derivatives of functions
that depend on complex-valued patterned matrices is studied; this was extended
in Hjørungnes and Palomar (2008a), where the connections to manifolds are exploited.
In Palomar and Verdú (2006), derivatives of certain scalar functions with respect to
complex-valued matrices are discussed, and some results for complex-valued scalar
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1.4 Brief Outline 5

functions with respect to matrices that contain dependent elements are presented.
Vaidyanathan et al. (2010, Chapter 20), presents a treatment of real- and complex-
valued matrix derivatives; however, it is based on component-wise developments. Some
results on derivatives with respect to patterned matrices are presented in Vaidyanathan
et al. (2010, Chapter 20).

1.4 Brief Outline

Some of the important notations used in this book and various useful formulas are
discussed in Chapter 2. These items provide background material for later chapters. A
classification of complex variables and functions is also presented in Chapter 2, which
includes a discussion of the differences between analytic functions – subject matter
usually studied in mathematical courses for engineers, and non-analytic functions, which
are encountered when dealing with practical engineering problems of complex variables.

In Chapter 3, the complex differential is introduced. Based on the complex differential,
the definition of the derivatives of complex-valued matrix functions with respect to the
unpatterned complex-valued matrix variable and its complex conjugate is introduced. In
addition, a procedure showing how the derivatives can be found from the differential of
a function when the complex matrix variable contains independent elements is presented
in Chapter 3. This chapter also contains several important results stated in theorems,
such as the chain rule and necessary conditions for optimality for real-valued scalar
functions.

Chapter 4 states several results in tables and shows how most of these results can be
derived for nine different types of functions. These nine function types result when the
input and the output of the function take the form of a scalar, a vector, or a matrix.

The Hessian matrix of complex-valued scalar, vector, and matrix functions dependent
on complex matrices is defined in Chapter 5, which shows how this Hessian matrix can be
obtained from the second-order differential. Hessian matrices can, for example, be used
to speed up convergence of iterative algorithms, to study the convexity and concavity of
an objective function, and to perform stability analysis of iterative algorithms.

Often, in signal processing and communications, the challenge is to find a matrix
that optimizes a problem when the matrix is constrained to belong to a certain set,
such as Hermitian matrices or symmetric matrices. For solving such types of problems,
derivatives associated with matrices belonging to these sets are useful. These types of
derivatives are called generalized complex-valued matrix derivatives, and a theory for
finding such derivatives is presented in Chapter 6.

In Chapter 7, various applications taken from signal processing and communications
are presented to show how complex-valued matrix derivatives can be used as a tool to
solve research problems in these two fields.

After the seven chapters, references and the index follow.
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2 Background Material

2.1 Introduction

In this chapter, most of the notation used in this book will be introduced. It is not assumed
that the reader is familiar with topics such as Kronecker product, Hadamard product,
or vectorization operator. Therefore, this chapter defines these concepts and gives some
of their properties. The current chapter also provides background material for matrix
manipulations that will be used later in the book. However, it contains just the minimum
of material that will be used later because many excellent books in linear algebra are
available for the reader to consult (Gantmacher 1959a–1959b; Horn & Johnson 1985;
Strang 1988; Magnus & Neudecker 1988; Golub & van Loan 1989; Horn & Johnson
1991; Lütkepohl 1996; Harville 1997; Bernstein 2005).

This chapter is organized as follows: Section 2.2 introduces the basic nota-
tion and classification used for complex-valued variables and functions. A discus-
sion of the differences between analytic and non-analytic functions is presented
in Section 2.3. Basic matrix-related definitions are provided in Section 2.4. Sev-
eral results involving matrix manipulations used in later chapters are found in Sec-
tion 2.5. Section 2.6 offers exercises related to the material included in this chap-
ter. Theoretical derivations and computer programming in MATLAB are topics of these
exercises.

2.2 Notation and Classification of Complex Variables and Functions

Denote R and C the sets of the real and complex numbers, respectively, and define
ZN � {0, 1, . . . , N − 1}. The notation used for the two matrices consisting entirely of
zeros and ones is 0N×Q and 1N×Q , respectively, where the size of the matrices is indicated
by the subindex to be N × Q.

The following conventions are always used in this book:

� Scalar quantities are denoted by lowercase symbols.
� Vector quantities are denoted by lowercase boldface symbols.
� Matrix quantities are denoted by capital boldface symbols.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19264-4 - Complex-Valued Matrix Derivatives: With Applications in Signal Processing and
Communications
Are Hjorungnes
Excerpt
More information

http://www.cambridge.org/9780521192644
http://www.cambridge.org
http://www.cambridge.org


2.2 Notation and Classification of Complex Variables and Functions 7

Table 2.1 Symbols and sizes of the most frequently used variables and functions.

Symbol z z Z f f F

Size 1 × 1 N × 1 N × Q 1 × 1 M × 1 M × P

2.2.1 Complex-Valued Variables

A function’s complex input argument can be a scalar, denoted z, a vector, denoted z, or
a matrix, denoted Z.

Let the symbol z denote a complex scalar variable, and let the real and imaginary part
of z be denoted by x and y, respectively, then

z = x + j y, (2.1)

where j is the imaginary unit, and j 2 = −1. The absolute value of the complex number z
is denoted by |z|.

The real and imaginary operators return the real and imaginary parts of the input
matrix, respectively. These operators are denoted by Re{·} and Im{·}. If Z ∈ C

N×Q is a
complex-valued matrix, then

Z = Re {Z} + j Im {Z} , (2.2)

Z∗ = Re {Z} − j Im {Z} , (2.3)

where Re {Z} ∈ R
N×Q , Im {Z} ∈ R

N×Q , and the operator (·)∗ denote the complex
conjugate of the matrix it is applied to. The real and imaginary operators can be
expressed as

Re {Z} = 1

2
(Z + Z∗) , (2.4)

Im {Z} = 1

2j
(Z − Z∗) . (2.5)

2.2.2 Complex-Valued Functions

For complex-valued functions, the following conventions are always used in this
book:

� If the function returns a scalar, then a lowercase symbol is used, for example, f .
� If the function returns a vector, then a lowercase boldface symbol is used, for example,

f .
� If the function returns a matrix, then a capital boldface symbol is used, for example,

F.

Table 2.1 shows the sizes and symbols of the variables and functions most frequently
used in the part of the book that treats complex matrix derivatives with independent
components. Note that F covers all situations because scalars f and vectors f are special
cases of a matrix. In the sequel, however, the three types of functions are distinguished
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8 Background Material

as scalar, vector, or matrix because, as we shall see in Chapter 4, different definitions of
the derivatives, based on type of functions, are found in the literature.

2.3 Analytic versus Non-Analytic Functions

Let the symbol ⊆ mean subset of, and ⊂ proper subset of. Mathematical courses
on complex functions for engineers often involve only the analysis of analytic func-
tions (Kreyszig 1988, p. 738) defined as follows:

Definition 2.1 (Analytic Function) Let D ⊆ C be the domain1 of definition of the
function f : D → C. The function f is an analytic function in the domain D if

lim
∆z→0

f (z + ∆z) − f (z)

∆z
exists for all z ∈ D.

If f (z) satisfies the Cauchy-Riemann equations (Kreyszig 1988, pp. 740–743), then it
is analytic. A function that is analytic is also named complex differentiable, holomorphic,
or regular. The Cauchy-Riemann equations for the scalar function f can be formulated
as a single equation in the following way:

∂

∂z∗ f = 0. (2.6)

From (2.6), it is seen that any analytic function f is not dependent on the variable z∗.
This can also be seen from Theorem 1 in Kreyszig (1988, p. 804), which states that any
analytic function f (z) can be written as a power series2 with non-negative exponents
of the complex variable z, and this power series is called the Taylor series. This series
does not contain any terms that depend on z∗. The derivative of a complex-valued scalar
function in mathematical courses of complex analysis for engineers is often defined only
for analytic functions. However, in engineering problems, the functions of interest often
are not analytic because they are often real-valued functions. If a function is dependent
only on z, as are analytic functions, and is not implicitly or explicitly dependent on z∗,
then this function cannot in general be real-valued; a function can be real-valued only if
the imaginary part of f vanishes, and this is possible only if the function also depends
on terms that depend on z∗. An alternative treatment for how to find the derivative of real
functions dependent on complex variables other than the one used for analytic function
is needed. In this book, a theory that solves this problem is provided for scalar, vector,
or matrix functions and variables.

1 If f : A → B, then the set A is called the domain of f , the set B is called the range of f , and the set
{ f (x) | x ∈ A} is called the image set of f (Munkres 2000, p. 16).

2 A power series in the variable z ∈ C is an infinite sum of the form

∞∑
n=0

an (z − z0)n , where an ,

z0 ∈ C (Kreyszig 1988, p. 812).
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2.3 Analytic versus Non-Analytic Functions 9

In engineering problems, the squared Euclidean distance is often used. Let f : C → C

be defined as

f (z) = |z|2 = zz∗. (2.7)

If the traditional definition of the derivative given in Definition 2.1 is used, then the
function f is not differentiable because

lim
∆z→0

f (z0 + ∆z) − f (z0)

∆z
= lim

∆z→0

|z0 + ∆z|2 − |z0|2
∆z

= lim
∆z→0

(z0 + ∆z)(z∗
0 + (∆z)∗) − z0z∗

0

∆z

= lim
∆z→0

(∆z) z∗
0 + z0(∆z)∗ + ∆z(∆z)∗

∆z
, (2.8)

and this limit does not exist, because different values are found depending on how ∆z is
approaching 0. Let ∆z = ∆x + j∆y. First, let ∆z approach 0 such that ∆x = 0, then
the last fraction in (2.8) is

j (∆y) z∗
0 − j z0∆y + (∆y)2

j∆y
= z∗

0 − z0 − j∆y, (2.9)

which approaches z∗
0 − z0 = −2j Im{z0}, when ∆y → 0. Second, let ∆z approach 0

such that ∆y = 0, then the last fraction in (2.8) is

(∆x) z∗
0 + z0∆x + (∆x)2

∆x
= z0 + z∗

0 + ∆x, (2.10)

which approaches z0 + z∗
0 = 2 Re{z0} when ∆x → 0. For an arbitrary complex number

z0, in general, 2 Re{z0} �= −2j Im{z0}. This means that the function f (z) = |z|2 = zz∗

is not differentiable when the commonly encountered definition given in Definition 2.1
is used, and, hence, f is not analytic.

Two alternative ways (Hayes 1996, Subsection 2.3.10) are known for finding the
derivative of a scalar real-valued function f ∈ R with respect to the unknown complex-
valued matrix variable Z ∈ C

N×Q . The first way is to rewrite f as a function of the
real X and imaginary parts Y of the complex variable Z, and then to find the derivatives
of the rewritten function with respect to these two independent real variables, X and Y ,
separately. Notice that N Q independent complex unknown variables in Z correspond to
2N Q independent real variables in X and Y . The second way to deal with this problem,
which is more elegant and is used in this book, is to treat the differentials of the variables
Z and Z∗ as independent, in the way that will be shown by Lemma 3.1. Chapter 3 shows
that the derivative of f with respect to Z and Z∗ can be identified by the differential
of f .

Complex numbers cannot be ordered as real numbers can. Therefore, the objective
functions of interest, when dealing with engineering problems, are usually real valued in
such a way that it makes sense to minimize or maximize them. If a real-valued function
depends on a complex matrix Z, it must also be explicitly or implicitly dependent on
Z∗, such that the result is real (see also the discussion following (2.6)). A real-valued
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10 Background Material

Table 2.2 Classification of functions.

Function type z, z∗ ∈ C z, z∗ ∈ C
N×1 Z, Z∗ ∈ C

N×Q

Scalar function f (z, z∗) f (z, z∗) f (Z, Z∗)

f ∈ C f : C × C → C f : C
N×1 × C

N×1 → C f : C
N×Q × C

N×Q → C

Vector function f (z, z∗) f (z, z∗) f (Z, Z∗)

f ∈ C
M×1 f : C × C → C

M×1 f : C
N×1 × C

N×1 → C
M×1 f : C

N×Q × C
N×Q → C

M×1

Matrix function F (z, z∗) F (z, z∗) F (Z, Z∗)

F ∈ C
M×P F : C × C → C

M×P F : C
N×1 × C

N×1 → C
M×P F : C

N×Q × C
N×Q → C

M×P

Adapted from Hjørungnes and Gesbert (2007a). C© 2007 IEEE.

function can consist of several terms; it is possible that some of these terms are complex
valued, even though their sum is real.

The main types of functions used throughout this book, when working with complex-
valued matrix derivatives with independent components, can be classified as in Table 2.2.
The table shows that all functions depend on a complex variable and the complex
conjugate of the same variable, and the reason for this is that the complex differential
of the variables Z and Z∗ should be treated independently. When the function has
two complex input variables of the same size (e.g., F : C

N×Q × C
N×Q → C

M×P for
the general case), then two input variables should be the complex conjugate of each
other. This means that they cannot be chosen independently of each other. However,
in Lemmas 3.1 and 6.1, it will be shown that the differentials of the two input matrix
variables Z and Z∗ are independent. The convention of using both a complex variable
and its complex conjugate explicitly in the function definition was used in Brandwood
(1983). When evaluating, for example, the most general function in Table 2.2 (i.e.,
F : C

N×Q × C
N×Q → C

M×P ), the notation adapted is that the two complex-valued
input variables should be the complex conjugates of each other. Hence, the two input
arguments of F (Z, Z∗) are a function of each other, but as will be seen in Lemma 3.1,
the differentials of the two input variables Z and Z∗ are independent. When working
with complex-valued matrix derivatives in later chapters, we will see that complex
differentials are very important.

Definition 2.2 (Formal Derivatives) Let z = x + j y, where x, y ∈ R, then the formal
derivatives, with respect to z and z∗ of f (z0) at z0 ∈ C or Wirtinger derivatives (Wirtinger
1927), are defined as

∂

∂z
f (z0) = 1

2

(
∂

∂x
f (z0) − j

∂

∂y
f (z0)

)
, (2.11)

∂

∂z∗ f (z0) = 1

2

(
∂

∂x
f (z0) + j

∂

∂y
f (z0)

)
. (2.12)

When finding ∂
∂z f (z0) and ∂

∂z∗ f (z0), the variables z and z∗ are treated as independent
variables (Brandwood 1983, Theorem 1).
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