THE CIRCUITRY OF THE
HUMAN SPINAL CORD: SPINAL
AND CORTICOSPINAL
MECHANISMS OF MOVEMENT

Studies of human movement have proliferated in recent years. This greatly expanded and thoroughly updated reference surveys the literature on the corticospinal control of spinal cord circuits in human subjects, showing how different circuits can be studied, their role in normal movement and how they malfunction in disease states. Chapters are highly illustrated and consistently organised, reviewing, for each pathway, the experimental background, methodology, organisation and control, role during motor tasks and changes in patients with central nervous system lesions. Each chapter concludes with a helpful résumé that can be used independently of the main text to provide practical guidance for clinical studies. The final four chapters bring together the changes in transmission in spinal and corticospinal pathways during movement and how they contribute to the desired movement. This book is essential reading for research workers and clinicians involved in the study, treatment and rehabilitation of movement disorders.

Emmanuel Pierrot-Deseilligny is Emeritus Professor of Clinical Neurophysiology and Rehabilitation at the Université Pierre et Marie Curie, Paris.

David Burke is the Bushell Professor of Neurology at Royal Prince Alfred Hospital and Associate Dean (Research), Sydney Medical School, The University of Sydney.
THE CIRCUITRY OF THE HUMAN SPINAL CORD

Spinal and Corticospinal Mechanisms of Movement

Emmanuel Pierrot-Deseilligny
Université Pierre et Marie Curie

David Burke
The University of Sydney
Contents

Acknowledgements xvi
Preface xvii
List of abbreviations xxi

1 General Methodology
 H Reflex and Tendon Jerk 1
 Basic Methodology (H reflex) 4
 H and M Recruitment Curve 7
 Tendon Jerk 8
 Random Alternation of Control and Conditioned Reflexes 8
 Time Resolution of the Method 8
 Recovery Cycle of the H Reflex 9
 Threshold Tracking of the H Reflex 11
 Mechanisms Acting on the Afferent Volley 11
 Alterations in the Excitability of Ia Afferents 11
 Presynaptic Inhibition of Ia Terminals 11
 Homosynaptic Depression 12
 Curtailment of the Compound EPSP by a Disynaptic Ib IPSP 12
 ‘Pool Problems’ 15
 Non-linearity in the Input–Output Relation 15
 Changes in the Recruitment Gain of the Motoneurone Pool 16
 Plateau Potentials and Amplification of Synaptic Input 17
 Quantitative Data 20
 Clinical Value 21
 The F wave 21
 Modulation of the On-Going EMG Activity 24
 Underlying Principles and Methodology 24
 Discrepant Changes in the On-Going EMG and in the H Reflex 26
 Advantages, Limitations and Conclusions 27
 Investigations on Single Motor Units 28
3 Fusimotor Mechanisms, Muscle Spindles and Their Role in the Control of Movement

Background 110
Methodology 114
Comparisons of Tendon Jerk and H Reflex 114
Nerve Blocks 115
Microneurography 115
Exploiting the Thixotropic Properties of Intrafusal Fibres 117
Critique of the Tests to Study Fusimotor Drive 117
Organisation and Pattern of Connections 118
Background Drive to Relaxed Muscles 118
Discharge Rates 118
Effect of Muscle Vibration on Human Spindles 119
Reflex Activation of Fusimotor Neurones 121
Supraspinal Activation of Fusimotor Neurones 123
Motor Tasks and Physiological Implications 123
Remote Muscle Contraction 123
Motor Preparation and Imagery 124
Deliberate Voluntary Effort 125
Isometric (Restraint) Contractions 125
Concentric and Eccentric Contractions 127
Activation of γ and β Motoneurones 127
Natural Unrestrained Movements 127
Possible Role of the Fusimotor System during Movement 128
Studies in Patients and Clinical Implications 129
Spasticity 129
Parkinson’s Disease 130
Résumé 130
References 133

4 Recurrent Inhibition

Background from Animal Experiments 138
Methodology 140
Arguable Techniques 140
The Paired H Reflex Technique 141
Underlying Principles 141
Conditioning Reflex and H’ Test Reflex 142
Evidence for Recurrent Inhibition 142
Validation 146

Critique: Limitations, Cautions, Conclusion 146
Heteronymous Recurrent Inhibition Underlying Principles 147
Orthodromic (Reflex) Discharge 148
Antidromic Motor Volleys 148
Evidence for Recurrent Inhibition 148
Critique: Limitations, Conclusions 152
Organisation and Pattern of Connections 152
Homonymous Recurrent Inhibition 152
Heteronymous Recurrent Inhibition in the Lower Limb 153
Heteronymous Recurrent Inhibition in the Upper Limb 154
Projections to Ia Inhibitory Interneurones 155
Cortical Control 157
Peripheral Control 157
Motor Tasks and Physiological Implications 158
Voluntary Contractions of the Test Muscle 158
Methodology 158
Various GS Voluntary Contractions 158
Mechanisms Underlying the Changes in H’ 160
Heteronymous Recurrent Inhibition 161
Conclusions and Functional Implications 162
Contraction of the Antagonistic Muscle 163
Co-contraction of Antagonistic Muscles 163
Stance 165
Homonymous Recurrent Inhibition 165
Heteronymous Recurrent Inhibition 165
Heteronymous Recurrent Inhibition during Gait 167
Spasticity: Recurrent Inhibition at Rest 169
Spasticity: Changes in Recurrent Inhibition during Motor Tasks 170
Patients with Other Movement Disorders 170
Résumé 170
References 174

5 Reciprocal Ia Inhibition

Background from Animal Experiments 178
Methodology 180
Methods to Investigate Reciprocal Ia Inhibition at Hinge Joints 180
Inhibition of the Monosynaptic Reflex 180
Modulation of the On-going EMG 181
PSTHs for Single Units 181
Evidence for Reciprocal Ia Inhibition 181
Evidence for Ia-Induced Inhibition 181
Evidence for Disynaptic Transmission 184
Recurrent Inhibition of the Relevant Interneurones 185
Critique of the Tests to Study Reciprocal Ia Inhibition 185
Organisation and Pattern of Connections 187
Pattern and Strength of Reciprocal Ia Inhibition at Rest at Hinge Joints 187
Other Inputs to Ia Interneurones 188
Cutaneous Facilitation of Reciprocal Ia Inhibition 188
Corticospinal Facilitation of Reciprocal Ia Inhibition 190
Vestibulospinal Facilitation of Reciprocal Ia Inhibition 190
Absence of ‘True’ Reciprocal Ia Inhibition at Wrist Level 190
Inhibition at Wrist Level Does Not Fulfil the Criteria for Reciprocal Ia Inhibition 190
Convergence of Group I Afferents from Several Different Muscles 192
Homosynaptic Depression 193
Motor Tasks and Physiological Implications 193
Voluntary Contraction of the Antagonist 194
Soleus H Reflex Depression 194
Reciprocal Ia Inhibition during Voluntary Ankles Dorsiflexion 194
Mechanisms Underlying Changes in Reciprocal Ia Inhibition 197
Functional Implications 198
Use-Dependent Plasticity 198
Voluntary Activation of the Agonist Muscle 199
Reciprocal Ia Inhibition during Co-contraction of Antagonistic Muscles 200
Postural Activity 202
Gait 204
Studies in Patients and Clinical Implications 204
Spasticity 205
Stroke 205
Spinal Cord Lesions 205
Underlying Mechanisms 206
Cerebral Palsy 206
Hyperekplexia 206
Parkinson’s Disease 206
Résumé 206
References 210

6 Ia Pathways 214
Background from Animal Experiments 214
Methodology 217
Methods to Investigate Ia Inhibition 217
Inhibition of the H Reflex at Rest 218
Inhibition in the PSTHs for Single Units 218
Evidence for Ia Inhibition 218
Evidence for a Ia Conditioning Input 218
Evidence for Disynaptic Transmission 221
Ia vs. Reciprocal Ia Inhibition 223
Short Duration 223
Oligosynaptic Group I Excitation 224
Critique of the Tests to Reveal Ia Effects 224
Organisation and Pattern of Connections 225
Pattern and Strength of Ia Inhibition 225
Homonymous Ia Inhibition 225
Heteronymous Ia Inhibition 225
Oligosynaptic Group I Excitation 226
Convergence with Ia Afferents 227
Effects of Low-Threshold Cutaneous Afferents 227
Cutaneous Suppression 227
Cutaneous Facilitation 229
Facilitation of Ia Inhibition by Joint Afferents 227
Cutaneous Suppression 227
Cutaneous Facilitation 229
Facilitation of Ia Inhibition by Joint Afferents 227
Effects from Nociceptive Afferents 230
Descending Effects 232
Convergent Inputs 232
Motor Tasks and Physiological Implications 234
Voluntary Contraction of the Agonist 234
Evidence for Suppression of Ia Inhibition 234
Possible Mechanisms 234
Possible Functional Role of Ia Inhibition 237
Facilitation by Other Afferent Discharges 237
Ia Inhibition to Motoneurones not Involved in the Voluntary Contraction 238

© in this web service Cambridge University Press & Assessment www.cambridge.org
7 Group II Pathways

Background from Animal Experiments 249
Methodology 252
Underlying Principles 252
Stretch-Induced Homonymous Group II Excitation 252
Responses in Standing Subjects 252
Responses in Subjects Reclining Supine 254
Electrically Induced Heteronymous Group II Excitation 254
Late High-Threshold H Reflex Facilitation 254
PSTHs of Single Units 254
Modulation of the On-going EMG 254
Evidence for Muscle Group II Excitation 257
Late Excitation is not Due to Motor or Fusimotor Axon Stimulation 257
Evidence for Slowly Conducting Afferents 257
Differential Effects of Vibration 257
Pharmacological Validation 260
Origin of Group II Afferents 260
Critique of the Tests Used to Reveal Group II Actions 260
Contamination by Group I Effects 260
Contamination by Transcortical Long-Latency Responses 261
Other Limitations 261
Organisation and Pattern of Connections 261
Peripheral Pathway 261
Conduction Velocity of Group II Afferents 261
Group II–Ia Ratio 262

Inactive Synergists 238
Voluntary Contraction of Antagonists 238
Changes in Ib Inhibition during Walking 238
Studies in Patients and Clinical Implications 241
Ib Inhibition 241
Spasticity 241
Hyperekplexia 241
Parkinson’s Disease 241
Restless Leg Syndrome, Supranuclear Palsy 241
Mechanisms Underlying the Decreased Ib Inhibition 241
Ib Excitation in Spastic Patients 242
Résumé 242
References 245

Central Pathway of Group II Excitation 262
Estimates of the Central Delay 262
Rostral Location of the Relevant Interneurones 263
Distribution of Group II Excitation 264
Stretch-Induced Responses in Ipsilateral and Contralateral Muscles (Lower Limb) 264
Heteronymous Group II Excitation (Lower Limb) 264
Group II Excitation in the Upper Limb 264
Convergence with Other Peripheral Afferents 265
Group I Afferents 265
Absence of Evidence for Cutaneous Projections 266
Peripheral Inhibitory Input to Interneurones 266
Absence of Group II Inhibition of Motoneurones 266
Corticospinal Control of Group II Excitation 267
Corticospinal Facilitation of Group II Excitation 267
Corticospinal Control of Inhibitory Interneurones 267
Motor Tasks and Physiological Implications of Motor Tasks 270
Voluntary Contractions 270
Postural Tasks 271
Homonymous Group II Excitation 271
Heteronymous Group II Excitation in Postural Tasks 273
Monoaminergic Control System? 273
Functional Implications 274
Gait 274
Contribution to Soleus Activation 274
Contribution to Quadriceps Activation 276
Group II-Mediated Responses to External Perturbations 276
Studies in Patients and Clinical Implications of Studies in Patients 279
Peripheral Neuropathies 279
Spasticity 279
Increased Propriospinally Mediated Group I–Group II Excitation 279
Possible Underlying Mechanisms 280
Is Increased Group II Excitation Sufficient to Cause Spasticity? 282
8 Presynaptic Inhibition of Ia Terminals

- **Background from Animal Experiments**
- **Methodology**
 - H Reflex vs. MEP
 - Assessing the Excitability of PAD Interneurones
 - Flawed Technique: Prolonged Vibration of the Homonymous Tendon
 - Short Vibration of a Heteronymous Tendon
 - Electrically Induced ‘D1’ and ‘D2’ Inhibitions
 - Critique
- **Assessing Monosynaptic Ia Facilitation of the H Reflex**
 - Experimental Paradigm
 - Validation
 - Critique
- **Techniques Using Single Motor Units**
 - Opposite Changes in Ia Facilitation and Heteronymous Inhibition
- **Organisation and Pattern of Connections**
 - Projections to Different Motoneurone Types
 - Organisation of PAD INs in Subsets
 - Peripheral Projections to PAD INs
 - Excitatory Effects
 - Depression from Tactile Cutaneous Afferents
- **Corticospinal Projections**
- **Vestibulospinal Projections**
- **Tonic Level of Presynaptic Inhibition of Ia Terminals**
- **Sensitivity of Stretch-Induced Ia Volleys to Presynaptic Inhibition**
- **Motor Tasks and Physiological Implications**
 - Ia Terminals on Voluntarily Activated Lower Limb Motoneurones
 - Evidence for Decreased Presynaptic Inhibition
 - Changes during Various Contractions
 - Origin and Functional Implications

9 Cutaneomuscular, Withdrawal and Flexor Reflex Afferent (‘FRA’) Responses

- **Background from Animal Experiments**
- **Cutaneous Responses through ‘Private’ Pathways**
- **Methodology**
 - Underlying Principles
 - Stimulation
- **Electrical Stimuli**
 - Mechanical Stimuli
- **Assessing the Effects of Cutaneous Stimuli**
 - Responses Recorded at Rest
 - Modulation of Motoneurone Excitability
Critique of the Tests to Study Cutaneous Effects 343
Withdrawal Reflexes 344
Afferent Pathway of Withdrawal Reflexes 344
Parallel between Pain Sensation and the RIII Reflex 344
Afferent Volleys Involved in the RIII Reflex and Pain 346
Central Pathway of Early Withdrawal Responses 347
Central Delay 347
Conclusion 349
Functional Organisation of Early Withdrawal Reflexes 349
Trunk Skin Reflexes 349
Plantar Responses 351
Other Withdrawal Responses in the Lower Limb 352
Withdrawal Responses in the Upper Limb 353
Late Withdrawal Responses 353
Latent Withdrawal Responses in Patients with Complete SCI 355
Late Responses in Normal Subjects 357
Interactions between Different Inputs 358
Painful Homonymous Cutaneous Volleys 358
Effects of Other Peripheral Inputs 359
Descending Effects 359
Changes during Motor Tasks 361
Voluntary Contraction 361
Postural Tasks 362
Gait 362
Cutaneomuscular Reflexes Evoked by Non-noxious Stimuli 362
The Different Responses 362
RII Reflex at Rest 362
Cutaneomuscular Reflexes during Voluntary Contraction 363
Modulation of the Monosynaptic Reflex 363
Afferent Pathway 365
Central Pathway of Early Responses 365
Spinal Origin of the Early Effects? 365
Oligo- or Poly-synaptic Spinal Pathways? 367
‘Private’ Pathway or Changes in Transmission in Another Pathway? 367
Presynaptic Inhibition of Ia Terminals 368
Central Pathway for Long-Latency Effects 368
Pattern of the Facilitation of Monosynaptic Reflexes 368
Latencies of the Responses 369
Observations in Patients 369
Maturation 369
Which Supraspinal Pathway in Lower Limbs? 369
Which Supraspinal Pathway in Upper Limbs? 371
Projections to Different Types of Motoneurones 372
Functional Role of Cutaneomuscular Responses 374
Cutaneomuscular Responses in the Upper Limb 374
Cutaneomuscular Responses in the Lower Limb 376
Interlimb Cutaneomuscular Responses 377
Gait 377
Changes in Patients and Clinical Implications 379
Complete Spinal Transection 380
Upper Motoneurone Lesions Other Than Complete SCI 380
Abolition of Normal Cutaneous Reflexes 380
Babinski Response 381
Withdrawal Reflexes in the Lower Limb 381
Flexor Spasms 381
Withdrawal Reflexes in the Upper Limb 382
Cutaneomuscular Responses 382
Grasp Reflex 382
Parkinson’s Disease 382
Restless Leg Syndrome 382
Cerebellar Patients 383
Peripheral Neuropathies 383
Diagnostic Uses 383
Résumé 383
References 389

10 Propriospinal Transmission of Descending Motor Commands 395
Background from Animal Experiments 395
The C3–C4 Propriospinal System in the Cat 395
The C3–C4 Propriospinal System in the Monkey 397
Methodology 398
Propriospinally Mediated Peripheral Excitation 398
Cutaneous Suppression of Descending Excitation 400
Rostral Location of the Relevant Interneurones 400
Organisation and Pattern of Connections 401
Excitatory Inputs to Propriospinal Neurones 401
Peripheral Excitatory Input 401
Corticospinal Excitation of Propriospinal Neurones 402
Feedback Inhibition of Propriospinal Neurones 405
Peripheral Inhibition of Propriospinal Neurones 405
Corticospinal Excitation of Feedback Inhibitory Interneurones 407
Possible Existence of Inhibitory Propriospinal Interneurones 408
Interaction between Excitatory and Inhibitory Inputs 408
Propriospinal Neurones and Inhibitory Interneurones 408
Can Transmission via Segmental Interneurones Explain the Results? 408
Cervical Activity Visualised with BOLD fMRI 410
Explanation for the Conflicting Conclusions 410
Natural vs. Artificial Activation of Corticospinal Projections 411
Organisation of the Cervical Propriospinal System 411
Organisation in Subsets 411
Convergence and Divergence 411
Projections to Different Types of Motoneurones 412
Motor Tasks and Physiological Implications 412
Transmission of a Part of the Descending Command 414
Underlying Principles 414
Evidence for Disfacilitation 414
Site of Disfacilitation 416
Effect on Various Motor Nuclei 416
Quantitative Aspects of the Cutaneous Suppression 416
Changes during Muscle Fatigue 417
Propriospinal Excitation during Simple Tasks 418
Reflex Facilitation at the Onset of Contraction 418
Descending Facilitation of Propriospinal Neurones 418
Factors Limiting the Increase in Reflex Facilitation 418
Further Insights on the Organisation of the System 419
Handedness-Related Asymmetry 419
Task-Dependent Changes 420
Grip 420
Reach-to-Grasp Movements 420
Grip–Lift Task 422
Functional Implications 422
Integration of Group I and Descending Inputs 422
Cutaneous Suppression of the Descending Command 423
In Which Movements Is the Propriospinal System Involved? 425
Studies in Patients and Clinical Implications 425
Lesion at the Junction C6–C7 Spinal Level 425
Stroke Patients 427
Cutaneous Suppression of the On-Going EMG 427
Correlation with Recovery from Hemiplegia 429
Parkinson’s Disease 430
Dystonia 431
The Lumbar Propriospinal System 431
Background from Animal Experiments 431
Methodology 431
Rostral Location of the Relevant Interneurones 432
Organisation and Pattern of Connections 432
Peripheral Excitatory Input 432
Peripheral Inhibitory Inputs 433
11 Spinal and Corticospinal Pathways in Different Movements

Peripheral Inhibition of Motoneurones 433
Corticospinal Control 434
Motor Tasks and Physiological Implications 434
Résumé 436
References 442

Presynaptic Inhibition of Ia Terminals 464
during Movements
Recurrent Inhibition during Movements 464
Propriospinal Pathways during Movements 465
Different Strategies for Proximal and Distal Movements 465
Rapid Concentric Movements 465
Coordinated Activation of Various Synergies 466
The Case for and against Muscle Synergies 467
Rationale 467
Arguments for the Hypothesis 467
Arguments against the Hypothesis 467
Conclusion 468
Where Are Motor Synergies Laid Down? 468
Spinal Origin? 468
Hierarchical Control Schema 469
Synergies Based on ‘Hardwired’ Spinal Connections 469
State-Dependent Modulation of Spinal Pathways 470
CPG 471
C3–C4 Propriospinal System 471
Co-contraction of Antagonists 472
Changes in Spinal Pathways 472
Hinge Joints 472
Ball Joints 473
Control of the Decreased Inhibition between Antagonists 473
Spinal Mechanisms 473
Specific Corticospinal Drive for Co-contractions 474
Joint Stiffness 475
Control of the Stretch Reflex at Hinge Joints 475
Control of the Excitation at Ball Joints 475
Involvement of Transcortical Reflexes in Movements 476
Task-Dependent Responses 476
Postural Responses 476
Co-ordinated Functional Responses 478
LLSRs vs. Volitional Activity and Group II-Mediated Responses 478
Voluntary Intent and Single Joint LLSRs 478
13 Plasticity in Spinal and Corticospinal Pathways

The H Reflex: A Tool to Study Synaptic Plasticity 541
Spinal Cord Plasticity 542
Evidence for Spinal Plasticity 543
’Spih"al Fixation’ in Animal Experiments 543
Training and Disuse 543
H Reflex Operant Conditioning 543
Maturation and Spinal Plasticity 546
Data from Animal Experiments 546
Human Cutaneous Reflexes 546
Proprioceptive Reflexes 547
Stance and Gait 547
Spinal Plasticity in the Elderly 548
Monosynaptic Reflex 548
Transmission in Spinal Pathways 548
Training Corrective Balance Reactions 548
Short-term Spinal Plasticity 549
Disuse 549
Specific Training 549
From Short- to Long-term Spinal Plasticity 550
Long-term Spinal Plasticity 551
Long-term Spinal Plasticity following CNS Lesions 552
Spontaneous Plasticity after SCI 552
Changes in Transmission in Spinal Pathways after CNS Lesion 552
Which Protocol for Rehabilitation of SCI? 552
Corticospinal Plasticity 553
Short-term Motor Cortex Plasticity 553
‘Use-Dependent’ Plasticity of the Motor Cortex 553
TMS-Induced Plasticity of the Motor Cortex 553
Peripheral-Induced Plasticity of the Motor Cortex 554
Corticospinal Plasticity Induced by Disuse or Specific Training 555
Long-term Motor Cortex Plasticity 555
Skill-Related Long-term Motor Cortex Plasticity 555
Reorganisation of the Motor Cortex Representation 555
Age-Related Changes 556
Brain Plasticity after Lesions 556
Take-over by the Ipsilateral Hemisphere? 556
Affected Hemisphere 557
Résumé 557
References 561

14 Contribution of Spinal Pathways to the Pathophysiology of Movement Disorders

Spinal Pathways in Spasticity 565
Definition 565
Spasticity vs. Animal Decerebrate Rigidity 566
Spasticity vs. ‘Contracture’ 566
Contribution to Motor Impairment 566
Spinal Pathways at Rest 567
Why Do Spinal Pathways Malfunction? 570
Changes in Spinal Pathways during Movement 571
Spasticity after Cerebral Lesions 572
Affected Side of Stroke Patients 572
Unaffected Side of Stroke Patients 572
Synkinetic Movements 572
Cerebral Palsy 572
Spasticity after Spinal Lesions 573
Spinal Pathways in Parkinson’s Disease 573
Possible Mechanisms Underlying Parkinsonian Rigidity 573
Increased Passive Muscle Stiffness 573
Exaggerated Long-Latency Responses to Stretch 574
Transmission in Spinal Pathways at Rest 574
Transmission in Spinal Pathways during Motor Tasks 575
Spinal Pathways in Dystonia 575
Résumé 576
References 577

Index 580
Acknowledgements

This book is dedicated to the memory of Anders Lundberg, whose work and personal support have provided the inspiration behind most of the research described here.

Writing this book would not have been possible without the understanding, life-long support and benign tolerance that we have received throughout our careers from Evelyne and Katre, who have allowed us to pursue our interests even when the demands placed on them were unreasonable and who have, in recent year, put much on hold while we completed this work.

Geneviève Bard and Mary Sweet have provided us with invaluable assistance in collating references and getting the text into presentable order. We are grateful for the friendship, loyalty and meticulous attention to detail that has characterised their association with us over more than two decades.

The studies reported here represent the intellectual achievements of collaborators, colleagues and students. We are grateful to everyone whose work is reported here, and to our colleagues and collaborators and their publishers who have allowed us to reproduce figures from their original work.

Finally, we are indebted to L’Institut National de la Santé et de la Recherche Médicale (INSERM) and the National Health & Medical Research Council of Australia (NHMRC) for recognising the value of research into human motor control and its disorders.
Preface

This book is the direct descendant of our book entitled *The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders*, published in 2005 by Cambridge University Press. A revised and updated edition was needed because in 7 years new and more recent data have changed views about the role of the spinal cord in the control of limb movement. This revised edition also takes into account the development and rapid uptake of investigations using transcranial stimulation of the motor cortex. Thus, much more attention has been put on the corticospinal control of movement and transcortical pathways. Neural plasticity, whether underlying learning a new skill by healthy subjects or compensatory mechanisms for the neural changes associated with ageing or disease, has also been the subject of many recent investigations that deserve to be considered.

The book is dedicated to Anders Lundberg (1920–2009). Anders Lundberg is rightfully seen as the father of modern spinal cord neurophysiology, on how spinal circuitry is mobilised by descending commands and how feedback modifies the command at spinal cord level. Anders Lundberg was an outstanding leader, an intense and focused researcher, a tough critic, a good listener and inspiring mentor. He and his students provided much of the background data from animal experiments for the human studies which this book attempts to summarise. Above all, not only did he lead the world in the definition of interneuronal mechanisms in the spinal cord but he also developed hypotheses about how these mechanisms would be used in the intact organism. In later years, having defined the C3–C4 propriospinal system in the cat, he undertook behavioural experiments to confirm its role...
in movement, and it remains the only carefully documented interneuronal system for which a functional purpose has been clearly identified. His enthusiasm and enormous intellect have provided an impetus for us to show how discoveries from animal experiments have benefited the human condition, despite the adaptations that are necessary to cater for the greater motor repertoire of human subjects.

In the preface to our previous book, we wrote: Over recent years, reappraisal of the role of direct cortico-motoneuronal projections in higher primates including humans has led to the view that the control of movement resides in the motor cortical centres that drive spinal motoneurone pools to produce the supraspinally crafted movement. This view belies the complex interneuronal machinery that resides in the spinal cord. It is a thesis of this book that the final movement is only that part of the supraspinally derived programme that the spinal cord circuitry deems appropriate. This statement remains, we believe, as true today as it was in 2005 and it is also a driving motivation behind this volume. As research interest shifts to the complexities of the cortical mechanisms in the control of movement, so too has the thrust of this new book shifted to encompass transcortical reflexes, motor cortex excitability and corticospinal mechanisms in greater detail. Nevertheless, it is timely to remind the reader that limb movements can be planned and their programs initiated by the brain but they cannot be performed without a spinal cord and they cannot be performed gracefully without the intricate feedback systems that reside within it.

As mentioned above, there has been an explosion of literature on motor control over the past 7 years, much of it devoted to cortical mechanisms preceding and associated with movement, and even some that do not have any direct influence on spinal circuitry. However, even in the latter instance, the state of the spinal cord is important when the procedures involved in testing the cortical circuitry depend on the modulation of a response that is transmitted through spinal mechanisms. In reviewing the literature for this book, we have become concerned that so simple a fact has been so often ignored in publications, even in prestigious journals.

However, the justification for a new book ultimately resides not in restating the obvious but in whether there is anything new to say, and accordingly it should be asked, precisely what is new in this book?

- To understand the influence of cortical mechanisms on the spinal motoneurone pools it is necessary to understand, first, how segmental mechanisms can modulate the command signal and, second, the limitations of techniques that can be used in human subjects to demonstrate appropriate changes. Accordingly, the structure of the initial chapters in this new book recapitulates that of the previous book – but each has been updated to cover new findings, new techniques and new appreciations of advantages and disadvantages.

- In a new chapter, the largest in this volume, we focus more fully on the techniques (and their limitations) used to study cortical and corticospinal mechanisms in the control of movement and on the results of such studies. It thereby provides an overview that integrates spinal and cortical mechanisms so that those who work at one end of the neuraxis can appreciate the importance of the other.

- A further major advance over the last decade has been on the plastic changes in connectivity that occur with development, senescence, motor learning, disease and recovery from it. An understanding of how the nervous system can adapt to changed circumstances is the key to understanding, on the one hand, acquired differences in motor skill and, on the other hand, the compensations, sometimes dysfunctional, that occur when the nervous system is damaged. Accordingly appropriate data are highlighted in chapters focussed on specific circuits, and there is a new chapter that specifically addresses the short- and long-standing adaptations of the function of spinal and corticospinal circuits to altered demands and pathology.

Organisation of Individual Chapters

We have retained the same format as for the previous book, with consideration first of the different spinal pathways for which there are reliable and non-invasive
methods of investigation. Accordingly, after an extensive chapter on Methodology, we consider spinal circuitry in Chapters 2–10 with, for each circuit:

1. A brief background from animal experiments. Human investigations are indirect and it is crucial to know the essential characteristics of each pathway described in animal experiments with recordings from motoneurones and/or interneurones. Caution should always be taken in extrapolating from data obtained in ‘reduced preparations’ (anaesthetised, decerebrate or spinalised animals) to awake intact human subjects, but the validation of a technique for exploring a given pathway may require controls only possible in animal experiments, and the results in human subjects are more credible when there is a close analogy with animal experiments.

2. A critical description of the available method(s) that have been used to explore the relevant pathways selectively. For those who wish to know how methods and concepts have evolved over the years and why some interpretations were erroneous even if, at the time, influential, the methods are described in detail, with their limits and caveats, and the results obtained and their interpretation(s) are critically evaluated in each chapter. Because human studies are fraught with technical difficulties, much space has been allotted to methods and potential pitfalls.

3. The organisation and descending control (in particular corticospinal) of these pathways in human subjects. The basic organisation of each pathway may well be the same in humans and cats, but the strength of the projections of individual spinal pathways on different motoneurone pools and their descending control have been the subject of phylogenetic adaptations to different motor repertoires. For the human lower limb, more elaborate reflex assistance is required for bipedal stance and gait. That there has been this phylogenetic adaptation argues that spinal pathways have a functional role in human subjects and are not evolutionary relics.

4. The changes in transmission in these pathways during various motor tasks. How spinal reflex pathways are used in motor control cannot be deduced from experiments on ‘reduced’ animal preparations. It requires experiments performed during natural movements, as can be done in humans. This has been one major contribution of human studies to the understanding of motor control physiology. Thus, even though many of the conclusions are speculative, this book gives a large place to the probable functional implications of the described changes in transmission in spinal pathways during movement.

5. Changes in transmission in these pathways in patients with various lesions of the CNS. This has provided new insights about the pathophysiology of the movement disorder in these patients.

Overall Organisation of the Book

We have again adopted much the same organisation as previously.

Methodology. The general methodologies which are used for investigating pathways are considered in a first chapter with the advantages and disadvantages of each technique. There is a risk that starting with a technical chapter would dissuade the non-specialist reader from delving further into the book. However, this initial chapter is useful to understand the rationale, advantages and limitations of the different techniques used to investigate different pathways, and we consider it important for those who have no experience with a particular technique but wish to use it in human subjects. Nevertheless it is not essential for the comprehension of subsequent chapters.

Résumés. For those who want to get to the gist of the matter reasonably quickly each chapter terminates with a résumé of its salient points. The résumés can be used on their own without reference to the detailed text. They give a practical ‘recipe’ on the choice of the appropriate technique and its proper use in routine clinical studies, together with data on the possible functional role of the particular pathway in motor control and in the pathophysiology of movement disorders.

Overviews. The final four chapters summarise and synthesise the changes in transmission in spinal and corticospinal pathways during movement, and how these changes contribute to motor control, and spinal
mechanisms underlying spasticity and motor impairment in patients with Parkinson’s disease and dystonia. The physiological and pathophysiological roles of spinal and corticospinal pathways are presented using a different approach to that in the previous chapters. With respect to the previous book, these overviews have been greatly developed.

A long chapter (Chapter 11) is focused on purposeful movements and involves:

(i) an overview of the contribution made by the different spinal pathways in various kinds of movement,

(ii) an attempt to unravel the relationships between volitional control, afferent feedback (in particular through transcortical reflexes), and possible efference copy,

(iii) a description of the changes in motor cortex excitability and short interval intracortical inhibition (SICI) during the different phases of various movement, and

(iv) the role of spinal and supraspinal factors in muscle fatigue.

Chapter 12 considers the contribution of spinal and transcortical pathways in unperturbed and perturbed stance and gait.

Plastic changes in spinal and corticospinal circuits are considered in Chapter 13.

In a brief summary, Chapter 14 collates data in preceding chapters on spinal mechanisms underlying spasticity and the motor impairment in patients with Parkinson’s disease and dystonia.
Abbreviations

Ach acetylcholine
ACT afferent conduction time
ADM abductor digiti minimi
AG1 first agonist burst
AG2 second agonist burst
AHP afterhyperpolarisation
ALS amyotrophic lateral sclerosis
ANT antagonist burst
APB abductor pollicis brevis
APL abductor pollicis longus
BB biceps brachii
BF biceps femoris
BR brachioradialis
CMEP cervicomedullary motor evoked potential
CNS central nervous system
CoM centre of mass
CPG central pattern generator
CPN common peroneal nerve
CS corticospinal tract
CSP contralateral silent period
CT conduction time
CUSUM cumulative sum
CV conduction velocity
D-wave direct wave of the corticospinal volley
DPN deep peroneal nerve
E1 early cutaneomuscular excitation
E2 late cutaneomuscular excitation
ECR extensor carpi radialis
ECT efferent conduction time
ECU extensor carpi ulnaris
ED extensor digitorum
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDB</td>
<td>extensor digitorum brevis</td>
</tr>
<tr>
<td>EDL</td>
<td>extensor digitorum longus</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>EHB</td>
<td>extensor hallucis brevis</td>
</tr>
<tr>
<td>EHL</td>
<td>extensor hallucis longus</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyogram</td>
</tr>
<tr>
<td>EPSP</td>
<td>excitatory post-synaptic potential</td>
</tr>
<tr>
<td>FA</td>
<td>fractional anisotropy</td>
</tr>
<tr>
<td>FCR</td>
<td>flexor carpi radialis</td>
</tr>
<tr>
<td>FCU</td>
<td>flexor carpi ulnaris</td>
</tr>
<tr>
<td>FDB</td>
<td>flexor digitorum brevis</td>
</tr>
<tr>
<td>FDI</td>
<td>first dorsal interosseous</td>
</tr>
<tr>
<td>FDP</td>
<td>flexor digitorum profundus</td>
</tr>
<tr>
<td>FDS</td>
<td>flexor digitorum superficialis</td>
</tr>
<tr>
<td>FHB</td>
<td>flexor hallucis brevis</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional magnetic resonance imaging</td>
</tr>
<tr>
<td>FN</td>
<td>femoral nerve</td>
</tr>
<tr>
<td>FPL</td>
<td>flexor pollicis longus</td>
</tr>
<tr>
<td>FRA</td>
<td>flexion reflex afferents</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GL</td>
<td>gastrocnemius lateralis</td>
</tr>
<tr>
<td>GM</td>
<td>gastrocnemius medialis</td>
</tr>
<tr>
<td>GS</td>
<td>gastrocnemius–soleus</td>
</tr>
<tr>
<td>GTO</td>
<td>Golgi tendon organ</td>
</tr>
<tr>
<td>H'</td>
<td>test reflex, paired H reflex</td>
</tr>
<tr>
<td>H1</td>
<td>conditioning H reflex, paired H reflex</td>
</tr>
<tr>
<td>HD</td>
<td>homosynaptic depression</td>
</tr>
<tr>
<td>Hmax</td>
<td>maximal H reflex</td>
</tr>
<tr>
<td>I-wave</td>
<td>indirect wave of the corticospinal volley</td>
</tr>
<tr>
<td>I1</td>
<td>cutaneomuscular inhibition</td>
</tr>
<tr>
<td>Ia IN</td>
<td>Ia inhibitory interneurone</td>
</tr>
<tr>
<td>Ib IN</td>
<td>Ib interneurone</td>
</tr>
<tr>
<td>ICF</td>
<td>intracortical facilitation</td>
</tr>
<tr>
<td>III</td>
<td>interhemispheric inhibition</td>
</tr>
<tr>
<td>IN</td>
<td>interneurone</td>
</tr>
<tr>
<td>IPSP</td>
<td>inhibitory post-synaptic potential</td>
</tr>
<tr>
<td>ISI</td>
<td>interstimulus interval</td>
</tr>
<tr>
<td>iSP</td>
<td>ipsilateral cortical silent period</td>
</tr>
<tr>
<td>L-Ac</td>
<td>L-acetylcarnitine</td>
</tr>
<tr>
<td>LAI</td>
<td>long-latency afferent inhibition</td>
</tr>
<tr>
<td>LICF</td>
<td>long-interval intracortical facilitation</td>
</tr>
<tr>
<td>LICI</td>
<td>long-interval intracortical inhibition</td>
</tr>
<tr>
<td>LL response</td>
<td>long-latency response</td>
</tr>
<tr>
<td>LLSR</td>
<td>long-latency stretch reflex</td>
</tr>
<tr>
<td>Loc Coer</td>
<td>locus coeruleus</td>
</tr>
<tr>
<td>LRN</td>
<td>lateral reticular nucleus</td>
</tr>
<tr>
<td>LTD</td>
<td>long-term depression</td>
</tr>
<tr>
<td>LTI</td>
<td>linear-time-invariant</td>
</tr>
<tr>
<td>LTP</td>
<td>long-term potentiation</td>
</tr>
<tr>
<td>M wave</td>
<td>direct motor response</td>
</tr>
<tr>
<td>M1</td>
<td>primary motor cortex</td>
</tr>
<tr>
<td>M2</td>
<td>long-latency stretch response (upper limb)</td>
</tr>
<tr>
<td>M3</td>
<td>long-latency stretch response</td>
</tr>
<tr>
<td>MC</td>
<td>musculo-cutaneous</td>
</tr>
<tr>
<td>MEP</td>
<td>motor evoked potential</td>
</tr>
<tr>
<td>MLSR</td>
<td>medium-latency stretch response</td>
</tr>
<tr>
<td>Mmax</td>
<td>maximal direct motor response</td>
</tr>
<tr>
<td>MN</td>
<td>motoneurone</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>MT</td>
<td>motor threshold</td>
</tr>
<tr>
<td>MU</td>
<td>motor unit</td>
</tr>
<tr>
<td>MVC</td>
<td>maximal voluntary contraction</td>
</tr>
<tr>
<td>NA</td>
<td>noradrenergic</td>
</tr>
<tr>
<td>NRM</td>
<td>nucleus raphe magnus</td>
</tr>
<tr>
<td>PAD</td>
<td>primary afferent depolarisation</td>
</tr>
<tr>
<td>PAD IN</td>
<td>interneurone mediating primary afferent depolarisation</td>
</tr>
<tr>
<td>PAS</td>
<td>paired associative stimulation</td>
</tr>
<tr>
<td>PB</td>
<td>peroneus brevis</td>
</tr>
<tr>
<td>PD</td>
<td>posterior deltoid</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PIC</td>
<td>persistent inward current</td>
</tr>
<tr>
<td>PL</td>
<td>peroneus longus</td>
</tr>
<tr>
<td>PM</td>
<td>pectoralis major</td>
</tr>
<tr>
<td>PN</td>
<td>propriospinal neurone</td>
</tr>
<tr>
<td>PSF</td>
<td>post-stimulus frequencygram</td>
</tr>
<tr>
<td>PSP</td>
<td>post-synaptic potential</td>
</tr>
<tr>
<td>PSTH</td>
<td>post-stimulus time histogram</td>
</tr>
<tr>
<td>PT</td>
<td>perception threshold</td>
</tr>
<tr>
<td>PTN</td>
<td>posterior tibial nerve</td>
</tr>
<tr>
<td>PTP</td>
<td>post-tetanic potentiation</td>
</tr>
<tr>
<td>RC</td>
<td>Renshaw cell</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM</td>
<td>rapid eye movements</td>
</tr>
<tr>
<td>RF</td>
<td>rectus femoris</td>
</tr>
<tr>
<td>rTMS</td>
<td>repetitive TMS</td>
</tr>
<tr>
<td>S1</td>
<td>conditioning stimulus, paired H reflex technique for recurrent inhibition</td>
</tr>
<tr>
<td>SAI</td>
<td>short-latency afferent inhibition</td>
</tr>
<tr>
<td>SCI</td>
<td>spinal cord injury</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SICF</td>
<td>short-interval intracortical facilitation</td>
</tr>
<tr>
<td>SICI</td>
<td>short-interval intracortical inhibition</td>
</tr>
<tr>
<td>SLSR</td>
<td>short-latency stretch reflex</td>
</tr>
<tr>
<td>SM</td>
<td>test stimulus, paired H reflex technique for recurrent inhibition</td>
</tr>
<tr>
<td>SPN</td>
<td>superficial peroneal nerve</td>
</tr>
<tr>
<td>SR</td>
<td>superficial radial</td>
</tr>
<tr>
<td>SSEP</td>
<td>somatosensory evoked potential</td>
</tr>
<tr>
<td>ST</td>
<td>semitendinosus</td>
</tr>
<tr>
<td>TA</td>
<td>tibialis anterior</td>
</tr>
<tr>
<td>TBS</td>
<td>theta burst stimulation</td>
</tr>
<tr>
<td>tDCS</td>
<td>transcranial direct current stimulation</td>
</tr>
<tr>
<td>TENS</td>
<td>transcutaneous electrical nerve stimulation</td>
</tr>
<tr>
<td>TES</td>
<td>transcranial electrical stimulation</td>
</tr>
<tr>
<td>TFL</td>
<td>tensor fascia latae</td>
</tr>
<tr>
<td>TMS</td>
<td>transcranial magnetic stimulation</td>
</tr>
<tr>
<td>TN</td>
<td>tibial nerve</td>
</tr>
<tr>
<td>Tri</td>
<td>triceps brachii</td>
</tr>
<tr>
<td>TT</td>
<td>tendon jerk threshold</td>
</tr>
<tr>
<td>TVR</td>
<td>tonic vibration reflex</td>
</tr>
<tr>
<td>UMN</td>
<td>upper motoneurone</td>
</tr>
<tr>
<td>VI</td>
<td>reflex response following M_{max} during voluntary contraction</td>
</tr>
<tr>
<td>VL</td>
<td>vastus lateralis</td>
</tr>
<tr>
<td>VM</td>
<td>vastus medialis</td>
</tr>
<tr>
<td>VS</td>
<td>vestibulospinal tract</td>
</tr>
<tr>
<td>VSCT</td>
<td>ventral spinocerebellar tract</td>
</tr>
</tbody>
</table>