AGN FEEDBACK IN GALAXY FORMATION

During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation.

The topics covered include downsizing and star-formation timescales in massive elliptical galaxies, the connection between the epochs of supermassive black hole growth and galaxy formation and the question of whether AGN and star formation coexist. The book also discusses key challenging computational problems, including jet–interstellar/intergalactic medium interactions, and both jet- and merging-induced star formation.

Suitable for both researchers and graduate students in astrophysics, this volume reflects the engaging and lively discussions taking place in this emerging field of research.

VINCENZO ANTONUCCIO-DELOGU is a research astronomer at the Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Catania, Italy. His research focuses on dynamics and substructure in clusters of galaxies, parallel N-body simulation codes and galaxy formation and evolution.

JOSEPH SILK is Savilian Professor of Astronomy at the University of Oxford, and Director of the Beecroft Institute of Particle Astrophysics and Cosmology (BIPAC). His research interests include theoretical cosmology, dark matter, galaxy formation and the cosmic microwave background.
AGN FEEDBACK
IN GALAXY FORMATION

Proceedings of the Workshop held in Vulcano,
Italy, May 18–22, 2008

Edited by

VINCENZO ANTONUCCIO-DELOGU
Istituto Nazionale di Astrofisica

JOSEPH SILK
University of Oxford
Contents

List of contributors page x
Preface xiii
The organising committees xv

Part I AGNs, starbursts and galaxy evolution 1

1 The effects of mass and star-formation timescale on galaxy evolution 3
C. D. Harrison and M. Colless
1.1 Introduction 3
1.2 Estimating the stellar population parameters 4
1.3 Scaling relations 4
1.4 Parameter distributions 6
1.5 The influence of mass 7
1.6 Star formation inside out 8
1.7 Summary 10
References 10

2 Suppressing cluster cooling flows by multiple AGN activity 11
A. Nusser
2.1 Introduction 11
2.2 Outline of the model 12
2.3 Results 17
2.4 Summary and discussion 18
References 20

3 Starburst and AGN activity in Spitzer-selected sources at high-z 21
M. Polletta, A. Omont, C. Lonsdale and D. Shupe
3.1 Introduction 21
3.2 Spitzer selection of high-z luminous infrared galaxies 21

© in this web service Cambridge University Press
www.cambridge.org
Contents

3.3 MAMBO observations and results 23
3.4 AGN and starburst MIR emission contributions 24
3.5 Host galaxies 25
3.6 Average SEDs 26
3.7 Summary and conclusions 27
References 28

4 Star formation in galaxies hosting active galactic nuclei up to $z \sim 1$ 29
J. D. Silverman, zCOSMOS and XMM-COSMOS
4.1 Introduction 29
4.2 Star formation rates in zCOSMOS galaxies hosting AGN 32
4.3 Further remarks on color–magnitude diagrams of AGN hosts 33
4.4 Conclusion: co-evolution of SMBHs and their host galaxies 35
References 36

Part II Co-evolution of black holes and galaxies 39
5 The symbiosis between galaxies and SMBHs 41
G. L. Granato, M. Cook, A. Lapi and L. Silva
5.1 Introduction 41
5.2 Standard SAMs, their successes and their failures 41
5.3 Possible solution from joint evolution of QSO and spheroids 43
5.4 The ABC scenario 44
References 45

6 On the origin of halo assembly bias 47
A. Keselman
6.1 Introduction 47
6.2 Measuring assembly bias in the quasi-linear regime 49
6.3 Conclusions 50
References 50

7 AGN, downsizing and galaxy bimodality 52
M. J. Stringer, A. J. Benson, K. Bundy and R. S. Ellis
7.1 Introduction 52
7.2 Hierarchical assembly 52
7.3 Modelling AGN feedback in galaxies 54
7.4 Colour bimodality 56
7.5 Understanding mass errors and cosmic variance 56
Acknowledgements 59
References 59

Part III Outflows and radio galaxies 61
8 Interaction and gas outflows in radio-loud AGN: disruptive and constructive effects of radio jets 63
R. Morganti
8.1 Why radio-loud AGN? 63
Contents

8.2 The nuclear regions probed by the HI and ionised gas 65
8.3 Moving to larger scales: jet-induced star formation 69
8.4 Conclusions 72
Acknowledgements 73
References 73
9 Young radio sources: evolution and broad-band emission 75
L. Ostorero, R. Moderski, Ł. Stawarz, M. Begelman, A. Diaferio,
I. Kowalska, J. Kataoka and S. J. Wagner
9.1 Introduction 75
9.2 The model: dynamical and spectral evolution 75
9.3 Comparison with broad-band spectra of GPS galaxies 77
9.4 Further observational support 78
9.5 Conclusions and future prospects 80
Acknowledgements 81
References 81
10 The duty cycle of radio galaxies and AGN feedback 82
S. Shabala
10.1 Introduction 82
10.2 Local sample 83
10.3 Intermittent AGN feedback in galaxy formation 88
10.4 Summary 95
Acknowledgements 96
References 96
11 Environment or outflows? New insight into the origin of narrow associated QSO absorbers 98
V. Wild
11.1 Introduction 98
11.2 Using ultraviolet NALs to reveal QSO feedback 99
11.3 The line-of-sight distribution of NALs in front of QSOs 101
11.4 The 3D distribution of NALs around QSOs 102
11.5 The clustering contribution to the line-of-sight excess 104
11.6 Radio loud vs. radio quiet 105
11.7 Conclusions 106
Acknowledgements 107
References 107
Part IV Models and numerical simulations: methods and results 109
12 Physical models of AGN feedback 111
V. Antonuccio-Delogu, J. Silk, C. Tortora, S. Kaviraj N. Napolitano
and A. D. Romeo
12.1 Introduction 111
Contents

12.2 Simulating jet propagation in a two-phase ISM 112
12.3 Global quenching in elliptical galaxies 129
12.4 Conclusions 151
References 154

13 Large-scale expansion of AGN outflows in a cosmological volume 157
P. Barai
13.1 Introduction 157
13.2 The numerical setup 157
13.3 Results and discussion 160
References 163

14 Relativistic jets and the inhomogeneous interstellar medium 165
G. V. Bicknell, J. L. Cooper and R. S. Sutherland
14.1 AGN feedback from a radio galaxy perspective 165
14.2 Simulation code 166
14.3 Isotropisation of jet momentum 166
14.4 Jet and disk simulations 166
14.5 Application to 4C31.04 169
14.6 Interaction of outflows with individual clouds 171
14.7 Main points 172
References 174

15 AGN feedback effect on intracluster medium properties from galaxy cluster hydrodynamical simulations 175
D. Fabjan, S. Borgani, L. Tornatore, A. Saro and K. Dolag
15.1 Introduction 175
15.2 The simulations 176
15.3 Temperature profiles 177
15.4 Metal enrichment of the ICM 178
15.5 Conclusions 180
Acknowledgements 181
References 182

16 Physics and fate of jet-related emission line regions 183
M. G. H. Krause and V. Gaibler
16.1 Introduction 183
16.2 Global jet simulations 185
16.3 Local simulations of multi-phase turbulence 187
16.4 Discussion and conclusions 190
References 192

17 Cusp–core dichotomy of elliptical galaxies: the role of thermal evaporation 194
C. Nipoti
Contents

17.1 Introduction 194
17.2 The formation of cusps and cores in elliptical galaxies 195
17.3 Implications for active galactic nuclei in elliptical galaxies 197
17.4 Conclusions 198
 Acknowledgements 198
 References 198

Index 200
Contributors

V. Antonuccio-Delogu, Istituto Nazionale di Astrofisica (INAF) Osservatorio Astrofisica di Catania, Via S. Sofia 78, 95123 Catania, Italy

P. Barai, University of Nevada, Las Vegas, Department of Physics & Astronomy, 4505 S. Maryland Parkway, Box 454002, Las Vegas, NV 89154-4002, USA

M. Begelman, JILA, University of Colorado, Boulder, CO 80309-0440, USA

A. J. Benson, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA

G. V. Bicknell, Australian National University, Research School of Astronomy & Astrophysics, Mt Stromlo Observatory, Cotter Rd, Weston ACT 2611, Australia

S. Borgani, University of Trieste, Department of Astronomy, Via Tiepolo 11, 34134 Trieste, Italy

K. Bundy, University of California, Berkeley, Astronomy Department, 601 Campbell Hall, Berkeley, CA 94720-3411, USA

M. Colless, Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia

M. Cook, SISSA-ISAS, Trieste, Via Beirut 2-4, 34151 Trieste, Italy

J. L. Cooper, Australian National University, Research School of Astronomy & Astrophysics, Mt Stromlo Observatory, Cotter Rd, Weston ACT 2611, Australia

A. Diaferio, Università degli Studi di Torino, Dipartimento di Fisica, Via Giuria 1, 10125, Torino, Italy

K. Dolag, Max Planck Institute für Astrophysik, Karl-Schwarzschild Strasse 1, Garching bei Muenchen, Germany
List of contributors

R. S. Ellis, University of Oxford, Oxford Astrophysics, Keble Road, Oxford OX1 3RH, UK

D. Fabjan, Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143 Trieste, Italy

V. Gaibler, Max Planck Institute für Extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany

G. L. Granato, INAF, Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143 Trieste, Italy

C. D. Harrison, Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile

J. Kataoka, Tokyo Institute of Technology, Department of Physics, 2-12-1, Ohokayama, Meguro Tokyo, 152-82551, Japan

S. Kaviraj, University of Oxford, Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK

A. Keselman, Technion, Physics Department, Haifa 32000, Israel

I. Kowalska, University of Warsaw, Astronomical Observatory, Al. Ujazdowskie 4, 00–478 Warsaw, Poland

M. G. H. Krause, Max Planck Institute für Extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany

A. Lapi, University of Rome ‘Tor Vergata’, Department of Physics, Via Della Ricerca Scientifica 1, 00133 Roma, Italy

C. Lonsdale, University of Virginia, Charlottesville, VA 22904, USA

R. Moderski, Nicolaus Copernicus Astronomical Centre, Bartycka 18, 00-716 Warsaw, Poland

R. Morganti, ASTRON, PO Box 2, 7990 AA Dwingeloo, The Netherlands

N. Napolitano, INAF, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, Naples, Italy

C. Nipoti, University of Bologna, Astronomy Department, Via Ranzani, 1, 40127 Bologna, Italy

A. Nusser, Technion, Physics Department, Haifa 32000, Israel

A. Omont, IAP, 75014 Paris, France
List of contributors

L. Ostorero, Università degli Studi di Torino, Dipartimento di Fisica, Via Giuria 1, 10125 Torino, Italy

M. Polletta, INAF-IASF Milano, Via E. Bassini 15, 20133 Milano, Italy

A. D. Romeo, Universidad Andres Bello, Departamento Ciencias Fisicas, Republica 252 Santiago, Chile

A. Saro, University of Trieste, Department of Astronomy, Via Tiepolo 11, 34134 Trieste, Italy

S. Shabala, University of Oxford, Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK

D. Shupe, IPAC, Pasadena, CA 91125, USA

J. Silk, University of Oxford, Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK

L. Silva, Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143 Trieste, Italy

J. D. Silverman, ETH, Institute of Astronomy, HIT J13.2, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland

L. Stawarz, Stanford University, Kavli Research Institute, Stanford, CA 94305, USA

M. J. Stringer, Durham University, Department of Physics, South Road, Durham, DH1 3LE, UK

R. S. Sutherland, Australian National University, Research School of Astronomy & Astrophysics, Mt Stromlo Observatory, Cotter Rd, Weston ACT 2611, Australia

L. Tornatore, University of Trieste, Department of Astronomy, Via Tiepolo 11, 34134 Trieste, Italy

C. Tortora, INAF, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, Naples, Italy

S. J. Wagner, Landessternwarte, 69117 Heidelberg, Germany

V. Wild, Institut d’Astrophysique de Paris, 98bis Boulevard Arago, 75014 Paris, France
Preface

During the past decade, convincing evidence has been accumulated concerning the effect that AGN activity has on the internal and external environment of host galaxies. At intermediate and relatively high redshifts (z-0.2–1.5) evidence for this interaction comes, for example, from the optical–radio alignment and from the observation of jet-induced star formation. In the nearby universe there is also a series of significant indications: the observation of recent episodes of star formation in otherwise old or early types of ellipticals has emerged from analyses of the SDSS. There is also more direct and circumstantial evidence from the analysis of regions such as the Minkowski object, or the distribution of star-forming regions around the nearby radio envelope of Cen A, and from the enhanced star formation seen in some satellite galaxies of active galaxies at relatively high redshift.

Parallel and somewhat independently from this more direct evidence, the study of galaxy evolution has provided the astrophysical community with challenging new questions. The availability of large-scale photometric and spectral surveys such as the 2dF and the Sloan Digital Sky Survey has made it possible to discover evidence for evolution of the stellar formation features on timescales that are very short, in cosmological terms. The paradigm thus emerging in the astrophysical community is that AGN activity could be tightly connected to these phenomena, and could be capable of affecting the evolution of stellar populations within galaxies.

The purpose of the Oxford–COSMOCT workshop on The Interface Between Galaxy Formation and AGNs, which took place on the island of Vulcano, Italy, from May 18th to 22nd, 2008, was to bring together two communities, studying galaxy formation and AGNs, with a view to better understanding AGN feedback in the context of galaxy formation. The observational connection also included more specific observational and theoretical evidence, such as jet-induced star formation, and the association of starbursts with AGNs and superwinds. The Scientific Committee put special emphasis on some central questions, which included the following: Is AGN feedback necessary to appreciate why the most massive
galaxies are red and dead? How do we understand downsizing and star-formation timescales in massive ellipticals? Can AGN provide positive as well as negative feedback for galaxy formation? What is the connection between the epochs of SMBH growth and galaxy formation? What is the evidence for jet-induced star formation? Do AGNs and star formation coexist, and is there a causal connection?

This volume collects the proceedings presented by most participants, and reflects the lively discussions on the observational and computational problems connected to the phenomenology of AGN feedback on their host galaxies. Particular care has been taken in discussing some key challenging computational problems, including (among others) jet–interstellar/intergalactic medium interactions, jet-induced stellar formation, and merging-induced stellar formation.

The subject of AGN feedback on their host galaxies, with all its rich observational phenomenology, is a relatively young one. Many different phenomena, such as the massive outflows from post-starburst galaxies, galaxy colour bimodality and others, can be projected into the perspective of the mutual interaction between AGN activity and galaxy formation. The workshop was the first one specifically dedicated to discussing this emerging paradigm, and we believe that the efforts made by the participants and by those who contributed to this volume will be useful for the astrophysical community at large.

The generous contributions from our sponsors, mentioned below, provided the necessary resources to organise this event. Special acknowledgment should be given to the technical and administrative staff of INAF, Catania Astrophysical Observatory, and particularly to Luigia Santagati for her dedication during the preparatory phases, and to Alfio Guiffrida and Piero Massimino, who brought a decent WiFi IT connection to the workshop’s site, and cared especially that it would work efficiently for the entire duration. We would also like to thank the secretarial staff, and in particular Stavro Ivanovski and Alessio Romeo, who kindly provided their help always with a smile.
The organising committees

Scientific Organising Committee
J. Silk (Oxford, UK, Chair)
F. Combes (Paris, France)
G. Hasinger (Heidelberg, Germany)
C. Norman (STSCI, USA)
V. Antonuccio-Delogu (Catania, Italy)

Local Organising Committee
V. Antonuccio-Delogu
Alessio D. Romeo
Alfio Giuffrida
Stavro Ivanovski
Luigia Santagati

Acknowledgements The workshop was made possible by generous donations from the European Science Foundation programme ASTROSIM – European Network for Computational Astrophysics (www.astrosim.net/), from the European Commission VI Framework Programme for Research & Development, Transfer of Knowledge Project (contract MTKD-CT-002995, Cosmology and Computational Astrophysics at Catania Astrophysical Observatory), and from the Italian National Institute for Astrophysics, INAF.