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Empirical Bayes and the James–Stein
Estimator

Charles Stein shocked the statistical world in 1955 with his proof that max-
imum likelihood estimation methods for Gaussian models, in common use
for more than a century, were inadmissible beyond simple one- or two-
dimensional situations. These methods are still in use, for good reasons,
but Stein-type estimators have pointed the way toward a radically differ-
ent empirical Bayes approach to high-dimensional statistical inference. We
will be using empirical Bayes ideas for estimation, testing, and prediction,
beginning here with their path-breaking appearance in the James–Stein for-
mulation.

Although the connection was not immediately recognized, Stein’s work
was half of an energetic post-war empirical Bayes initiative. The other
half, explicitly named “empirical Bayes” by its principal developer Her-
bert Robbins, was less shocking but more general in scope, aiming to show
how frequentists could achieve full Bayesian efficiency in large-scale par-
allel studies. Large-scale parallel studies were rare in the 1950s, however,
and Robbins’ theory did not have the applied impact of Stein’s shrinkage
estimators, which are useful in much smaller data sets.

All of this has changed in the 21st century. New scientific technolo-
gies, epitomized by the microarray, routinely produce studies of thousands
of parallel cases — we will see several such studies in what follows —
well-suited for the Robbins point of view. That view predominates in the
succeeding chapters, though not explicitly invoking Robbins’ methodology
until the very last section of the book.

Stein’s theory concerns estimation, whereas the Robbins branch of em-
pirical Bayes allows for hypothesis testing, that is, for situations where
many or most of the true effects pile up at a specific point, usually called
0. Chapter 2 takes up large-scale hypothesis testing, where we will see, in
Section 2.6, that the two branches are intertwined. Empirical Bayes theory
blurs the distinction between estimation and testing as well as between fre-
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2 Empirical Bayes and the James–Stein Estimator

quentist and Bayesian methods. This becomes clear in Chapter 2, where we
will undertake frequentist estimation of Bayesian hypothesis testing rules.

1.1 Bayes Rule and Multivariate Normal Estimation

This section provides a brief review of Bayes theorem as it applies to mul-
tivariate normal estimation. Bayes rule is one of those simple but profound
ideas that underlie statistical thinking. We can state it clearly in terms of
densities, though it applies just as well to discrete situations. An unknown
parameter vector µ with prior density g(µ) gives rise to an observable data
vector z according to density fµ(z),

µ ∼ g(·) and z|µ ∼ fµ(z). (1.1)

Bayes rule is a formula for the conditional density of µ having observed z
(its posterior distribution),

g(µ|z) = g(µ) fµ(z)/ f (z) (1.2)

where f (z) is the marginal distribution of z,

f (z) =
∫

g(µ) fµ(z) dµ, (1.3)

the integral being over all values of µ.
The hardest part of (1.2), calculating f (z), is usually the least neces-

sary. Most often it is sufficient to note that the posterior density g(µ|z) is
proportional to g(µ) fµ(z), the product of the prior density g(µ) and the
likelihood fµ(z) of µ given z. For any two possible parameter values µ1

and µ2, (1.2) gives
g(µ1|z)
g(µ2|z)

=
g(µ1)
g(µ2)

fµ1 (z)

fµ2 (z)
, (1.4)

that is, the posterior odds ratio is the prior odds ratio times the likelihood
ratio. Formula (1.2) is no more than a statement of the rule of conditional
probability but, as we will see, Bayes rule can have subtle and surprising
consequences.

Exercise 1.1 Suppose µ has a normal prior distribution with mean 0 and
variance A, while z given µ is normal with mean µ and variance 1,

µ ∼ N(0, A) and z|µ ∼ N(µ, 1). (1.5)

Show that

µ|z ∼ N(Bz, B) where B = A/(A + 1). (1.6)
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1.1 Bayes Rule and Multivariate Normal Estimation 3

Starting down the road to large-scale inference, suppose now we are
dealing with many versions of (1.5),

µi ∼ N(0, A) and zi|µi ∼ N(µi, 1) [i = 1, 2, . . . ,N], (1.7)

the (µi, zi) pairs being independent of each other. Letting µ = (µ1, µ2, . . . ,

µN)′ and z = (z1, z2, . . . , zN)′, we can write this compactly using standard
notation for the N-dimensional normal distribution,

µ ∼ NN(0, AI) (1.8)

and

z|µ ∼ NN(µ, I) (1.9)

where I is the N × N identity matrix. Then Bayes rule gives posterior dis-
tribution

µ|z ∼ NN(Bz, BI) [B = A/(A + 1)], (1.10)

this being (1.6) applied component-wise.
Having observed z we wish to estimate µ with some estimator µ̂ = t(z),

µ̂ = (µ̂1, µ̂2, . . . , µ̂N)′ . (1.11)

We use total squared error loss to measure the error of estimating µ by µ̂,

L (µ, µ̂) = ‖µ̂ − µ‖2 =
N∑

i=1

(µ̂i − µi)
2 (1.12)

with the corresponding risk function being the expected value of L(µ, µ̂)
for a given µ,

R(µ) = Eµ {L (µ, µ̂)} = Eµ

{
‖t(z) − µ‖2

}
, (1.13)

Eµ indicating expectation with respect to z ∼ NN(µ, I), µ fixed.
The obvious estimator of µ, the one used implicitly in every regression

and ANOVA application, is z itself,

µ̂(MLE) = z, (1.14)

the maximum likelihood estimator (MLE) of µ in model (1.9). This has
risk

R(MLE)(µ) = N (1.15)

for every choice of µ; every point in the parameter space is treated equally
by µ̂(MLE), which seems reasonable for general estimation purposes.
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4 Empirical Bayes and the James–Stein Estimator

Suppose though we have prior belief (1.8) which says that µ lies more
or less near the origin 0. According to (1.10), the Bayes estimator is

µ̂(Bayes) = Bz =

(
1 − 1

A + 1

)
z, (1.16)

this being the choice that minimizes the expected squared error given z. If
A = 1, for instance, µ̂(Bayes) shrinks µ̂(MLE) halfway toward 0. It has risk

R(Bayes)(µ) = (1 − B)2‖µ‖2 + NB2, (1.17)

(1.13), and overall Bayes risk

R(Bayes)
A = EA

{
R(Bayes)(µ)

}
= N

A
A + 1

, (1.18)

EA indicating expectation with respect to µ ∼ NN(0, AI).

Exercise 1.2 Verify (1.17) and (1.18).

The corresponding Bayes risk for µ̂(MLE) is

R(MLE)
A = N

according to (1.15). If prior (1.8) is correct then µ̂(Bayes) offers substantial
savings,

R(MLE)
A − R(Bayes)

A = N/(A + 1); (1.19)

with A = 1, µ̂(Bayes) removes half the risk of µ̂(MLE).

1.2 Empirical Bayes Estimation

Suppose model (1.8) is correct but we don’t know the value of A so we
can’t use µ̂(Bayes). This is where empirical Bayes ideas make their appear-
ance. Assumptions (1.8), (1.9) imply that the marginal distribution of z
(integrating z ∼ NN(µ, I) over µ ∼ NN(0, A · I)) is

z ∼ NN (0, (A + 1)I) . (1.20)

The sum of squares S = ‖z‖2 has a scaled chi-square distribution with N
degrees of freedom,

S ∼ (A + 1)χ2
N , (1.21)

so that

E

{
N − 2

S

}
=

1
A + 1

. (1.22)
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1.2 Empirical Bayes Estimation 5

Exercise 1.3 Verify (1.22).

The James–Stein estimator is defined to be

µ̂(JS) =

(
1 − N − 2

S

)
z. (1.23)

This is just µ̂(Bayes) with an unbiased estimator (N − 2)/S substituting for
the unknown term 1/(A + 1) in (1.16). The name “empirical Bayes” is sat-
isfyingly apt for µ̂(JS): the Bayes estimator (1.16) is itself being empirically
estimated from the data. This is only possible because we have N similar
problems, zi ∼ N(µi, 1) for i = 1, 2, . . . ,N, under simultaneous considera-
tion.

It is not difficult to show that the overall Bayes risk of the James–Stein
estimator is

R(JS)
A = N

A
A + 1

+
2

A + 1
. (1.24)

Of course this is bigger than the true Bayes risk (1.18), but the penalty is
surprisingly modest,

R(JS)
A

/
R(Bayes)

A = 1 +
2

N · A . (1.25)

For N = 10 and A = 1, R(JS)
A is only 20% greater than the true Bayes risk.

The shock the James–Stein estimator provided the statistical world didn’t
come from (1.24) or (1.25). These are based on the zero-centric Bayesian
model (1.8), where the maximum likelihood estimator µ̂(0) = z, which
doesn’t favor values of µ near 0, might be expected to be bested. The rude
surprise came from the theorem proved by James and Stein in 19611:

Theorem For N ≥ 3, the James–Stein estimator everywhere dominates
the MLE µ̂(0) in terms of expected total squared error; that is,

Eµ
{
‖µ̂(JS) − µ‖2

}
< Eµ

{
‖µ̂(MLE) − µ‖2

}
(1.26)

for every choice of µ.

Result (1.26) is frequentist rather that Bayesian — it implies the supe-
riority of µ̂(JS) no matter what one’s prior beliefs about µ may be. Since
versions of µ̂(MLE) dominate popular statistical techniques such as linear
regression, its apparent uniform inferiority was a cause for alarm. The fact
that linear regression applications continue unabated reflects some virtues
of µ̂(MLE) discussed later.

1 Stein demonstrated in 1956 that µ̂(0) could be everywhere improved. The specific form
(1.23) was developed with his student Willard James in 1961.
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6 Empirical Bayes and the James–Stein Estimator

A quick proof of the theorem begins with the identity

(µ̂i − µi)
2 = (zi − µ̂i)

2 − (zi − µi)
2 + 2 (µ̂i − µi) (zi − µi). (1.27)

Summing (1.27) over i = 1, 2, . . . ,N and taking expectations gives

Eµ

{
‖µ̂ − µ‖2

}
= Eµ

{
‖z − µ̂‖2

}
− N + 2

N∑
i=1

covµ (µ̂i, zi) , (1.28)

where covµ indicates covariance under z ∼ NN(µ, I). Integration by parts
involving the multivariate normal density function fµ(z) = (2π)−N/2 exp{− 1

2∑
(zi − µi)2} shows that

covµ (µ̂i, zi) = Eµ

{
∂µ̂i

∂zi

}
(1.29)

as long as µ̂i is continuously differentiable in z. This reduces (1.28) to

Eµ ‖µ̂ − µ‖2 = Eµ

{
‖z − µ̂‖2

}
− N + 2

N∑
i=1

Eµ

{
∂µ̂i

∂zi

}
. (1.30)

Applying (1.30) to µ̂(JS) (1.23) gives

Eµ

{∥∥∥µ̂(JS) − µ
∥∥∥2} = N − Eµ

{
(N − 2)2

S

}
(1.31)

with S =
∑

z2
i as before. The last term in (1.31) is positive if N exceeds 2,

proving the theorem.

Exercise 1.4 (a) Use (1.30) to verify (1.31). (b) Use (1.31) to verify
(1.24).

The James–Stein estimator (1.23) shrinks each observed value zi toward
0. We don’t have to take 0 as the preferred shrinking point. A more general
version of (1.8), (1.9) begins with

µi
ind∼ N(M, A) and zi|µi

ind∼ N(µi, σ
2
0) (1.32)

for i = 1, 2, . . . ,N, where M and A are the mean and variance of the prior
distribution. Then (1.10) and (1.20) become

zi
ind∼ N

(
M, A + σ2

0

)
and µi|zi

ind∼ N
(
M + B(zi − M), Bσ2

0

)
(1.33)

for i = 1, 2, . . . ,N, where

B =
A

A + σ2
0

. (1.34)
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1.3 Estimating the Individual Components 7

Now Bayes rule µ̂(Bayes)
i = M + B(zi − M) has the James–Stein empirical

Bayes estimator

µ̂(JS)
i = z̄ +

(
1 − (N − 3)σ2

0

S

)
(zi − z̄), (1.35)

with z̄ =
∑

zi/N and S =
∑

(zi − z̄)2. The theorem remains true as stated,
except that we now require N ≥ 4.

If the difference in (1.26) were tiny then µ̂(JS) would be no more than an
interesting theoretical tidbit. In practice though, the gains from using µ̂(JS)

can be substantial, and even, in favorable circumstances, enormous.
Table 1.1 illustrates one such circumstance. The batting averages zi (num-

ber of successful hits divided by the number of tries) are shown for 18
major league baseball players early in the 1970 season. The true values µi

are taken to be their averages over the remainder of the season, comprising
about 370 more “at bats” each. We can imagine trying to predict the true
values from the early results, using either µ̂(MLE)

i = zi or the James–Stein es-
timates (1.35) (withσ2

0 equal to the binomial estimate z̄(1−z̄)/45, z̄ = 0.265
the grand average2). The ratio of prediction errors is

18∑
1

(
µ̂(JS)

i − µi

)2 / 18∑
1

(
µ̂(MLE)

i − µi

)2
= 0.28, (1.36)

indicating a tremendous advantage for the empirical Bayes estimates.
The initial reaction to the Stein phenomena was a feeling of paradox:

Clemente, at the top of the table, is performing independently of Munson,
near the bottom. Why should Clemente’s good performance increase our
prediction for Munson? It does for µ̂(JS) (mainly by increasing z̄ in (1.35)),
but not for µ̂(MLE). There is an implication of indirect evidence lurking
among the players, supplementing the direct evidence of each player’s
own average. Formal Bayesian theory supplies the extra evidence through
a prior distribution. Things are more mysterious for empirical Bayes meth-
ods, where the prior may exist only as a motivational device.

1.3 Estimating the Individual Components

Why haven’t James–Stein estimators displaced MLEs in common statis-
tical practice? The simulation study of Table 1.2 offers one answer. Here
N = 10, with the ten µi values shown in the first column; µ10 = 4 is much

2 The zi are binomial here, not normal, violating the conditions of the theorem, but the
James–Stein effect is quite insensitive to the exact probabilistic model.
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8 Empirical Bayes and the James–Stein Estimator

Table 1.1 Batting averages zi = µ̂
(MLE)
i for 18 major league players early

in the 1970 season; µi values are averages over the remainder of the
season. The James–Stein estimates µ̂(JS)

i (1.35) based on the zi values
provide much more accurate overall predictions for the µi values. (By
coincidence, µ̂i and µi both average 0.265; the average of µ̂(JS)

i must equal
that of µ̂(MLE)

i .)

Name Hits/AB µ̂(MLE)
i µi µ̂(JS)

i

Clemente 18/45 .400 .346 .294
F. Robinson 17/45 .378 .298 .289
F. Howard 16/45 .356 .276 .285
Johnstone 15/45 .333 .222 .280
Berry 14/45 .311 .273 .275
Spencer 14/45 .311 .270 .275
Kessinger 13/45 .289 .263 .270
L. Alvarado 12/45 .267 .210 .266
Santo 11/45 .244 .269 .261
Swoboda 11/45 .244 .230 .261
Unser 10/45 .222 .264 .256
Williams 10/45 .222 .256 .256
Scott 10/45 .222 .303 .256
Petrocelli 10/45 .222 .264 .256
E. Rodriguez 10/45 .222 .226 .256
Campaneris 9/45 .200 .286 .252
Munson 8/45 .178 .316 .247
Alvis 7/45 .156 .200 .242

Grand Average .265 .265 .265

different than the others. One thousand simulations of z ∼ N10(µ, I) each
gave estimates µ̂(MLE) = z and µ̂(JS) (1.23). Average squared errors for
each µi are shown. For example, (µ̂(MLE)

1 −µ1)2 averaged 0.95 over the 1000
simulations, compared to 0.61 for (µ̂(JS)

1 − µ1)2.
We see that µ̂(JS)

i gave better estimates than µ̂(MLE)
i for the first nine cases,

but was much worse for estimating the outlying case µ10. Overall, the total
mean squared errors favored µ(JS), as they must.

Exercise 1.5 If we assume that the µi values in Table 1.2 were obtained

from µi
ind∼ N(0, A), is the total error 8.13 about right?

The James–Stein theorem concentrates attention on the total squared er-
ror loss function

∑
(µ̂i − µi)2, without concern for the effects on individual

cases. Most of those effects are good, as seen in Table 1.2, but genuinely
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1.3 Estimating the Individual Components 9

Table 1.2 Simulation experiment: z ∼ N10(µ, I) with (µ1, µs, . . . , µ10) as
shown in first column. MSE(MLE)

i is the average squared error
(µ̂(MLE)

i − µi)2, likewise MSE(JS)
i . Nine of the cases are better estimated by

James–Stein, but for the outlying case 10, µ̂(JS)
10 has nearly twice the error

of µ̂(MLE)
10 .

µi MSE(MLE)
i MSE(JS)

i

1 −.81 .95 .61
2 −.39 1.04 .62
3 −.39 1.03 .62
4 −.08 .99 .58
5 .69 1.06 .67
6 .71 .98 .63
7 1.28 .95 .71
8 1.32 1.04 .77
9 1.89 1.00 .88

10 4.00 1.08 2.04!!

Total Sqerr 10.12 8.13

unusual cases, like µ10, can suffer. Baseball fans know that Clemente was
in fact an extraordinarily good hitter, and shouldn’t have been shrunk so
drastically toward the mean of his less-talented cohort. Current statistical
practice is quite conservative in protecting individual inferences from the
tyranny of the majority, accounting for the continued popularity of stand-
alone methods like µ̂(MLE). On the other hand, large-scale simultaneous
inference, our general theme here, focuses on favorable group inferences.

Compromise methods are available that capture most of the group sav-
ings while protecting unusual individual cases. In the baseball example,
for instance, we might decide to follow the James–Stein estimate (1.35)
subject to the restriction of not deviating more than D σ0 units away from
µ̂(MLE)

i = zi (the so-called “limited translation estimator” µ̂(D)
i ):

µ̂(D)
i =

⎧⎪⎪⎨⎪⎪⎩
max
(
µ̂(JS)

i , µ̂
(MLE)
i − Dσ0

)
for zi > z̄

min
(
µ̂(JS)

i , µ̂
(MLE)
i + Dσ0

)
for zi ≤ z̄.

(1.37)

Exercise 1.6 Graph µ̂(D)
i as a function of zi for the baseball data.

Taking D = 1 says that µ̂(D)
i will never deviate more than σ0 = 0.066

from zi, so Clemente’s prediction would be µ̂(D)
1 = 0.334 rather than µ̂(JS)

1 =
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10 Empirical Bayes and the James–Stein Estimator

0.294. This sacrifices some of the µ̂(JS) savings relative to µ̂(MLE), but not
a great deal: it can be shown to lose only about 10% of the overall James–
Stein advantage in the baseball example.

1.4 Learning from the Experience of Others

Bayes and empirical Bayes techniques involve learning from the experi-
ence of others, e.g., each baseball player learning from the other 17. This
always raises the question, “Which others?” Chapter 10 returns to this
question in the context of hypothesis testing. There we will have thousands
of other cases, rather than 17, vastly increasing the amount of “other” ex-
perience.

Figure 1.1 diagrams James–Stein estimation, with case 1 learning from
the N−1 others. We imagine that the others have been observed first, giving
estimates (M̂, Â) for the unknown Bayes parameters in (1.32) (taking σ2

0 =

1). The estimated prior distribution N(M̂, Â) is then used to supplement
the direct evidence z1 ∼ N(µ1, 1) for the estimation of µ1. (Actually µ̂(JS)

i

includes zi as well as the others in estimating (M̂, Â) for use on µ1: it can
be shown that this improves the accuracy of µ̂(JS)

1 .) Versions of this same
diagram apply to the more intricate empirical Bayes procedures that follow.

Learning from the experience of others is not the sole property of the
Bayes world. Figure 1.2 illustrates a common statistical situation. A total
of N = 157 healthy volunteers have had their kidney function evaluated
by a somewhat arduous medical procedure. The scores are plotted versus
age, higher scores indicating better function, and it is obvious that function
tends to decrease with age. (At one time, kidney donation was forbidden
for donors exceeding 60, though increasing demand has relaxed this rule.)
The heavy line indicates the least squares fit of function to age.

A potential new donor, age 55, has appeared, but it is not practical
to evaluate his kidney function by the arduous medical procedure. Fig-
ure 1.2 shows two possible predictions: the starred point is the function
score (−0.01) for the only 55-year-old person among the 157 volunteers,
while the squared point reads off the value of the least square line (−1.46)
at age = 55. Most statisticians, frequentist or Bayesian, would prefer the
least squares prediction.

Tukey’s evocative term “borrowing strength” neatly captures the regres-
sion idea. This is certainly “learning from the experience of others,” but
in a more rigid framework than Figure 1.1. Here there is a simple covari-
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