
P, NP, and NP-Completeness
The Basics of Computational Complexity

The focus of this book is the P versus NP Question and the theory of NP-completeness.
It also provides adequate preliminaries regarding computational problems and compu-
tational models.

The P versus NP Question asks whether finding solutions is harder than checking
the correctness of solutions. An alternative formulation asks whether discovering proofs
is harder than verifying their correctness. It is widely believed that the answer to these
equivalent formulations is positive, and this is captured by saying that P is different
from NP.

Although the P versus NP Question remains unresolved, the theory of NP-
completeness offers evidence for the intractability of specific problems in NP by showing
that they are universal for the entire class. Amazingly enough, NP-complete problems
exist, and hundreds of natural computational problems arising in many different areas
of mathematics and science are NP-complete.

oded goldreich is a Professor of Computer Science at the Weizmann Institute of
Science and an Incumbent of the Meyer W. Weisgal Professorial Chair. He is an editor
for the SIAM Journal on Computing, the Journal of Cryptology, and Computational
Complexity and previously authored the books Modern Cryptography, Probabilistic
Proofs and Pseudorandomness, the two-volume work Foundations of Cryptography,
and Computational Complexity: A Conceptual Perspective.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


P, NP, and NP-Completeness
The Basics of Computational Complexity

ODED GOLDREICH

Weizmann Institute of Science

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521122542

c© Oded Goldreich 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Goldreich, Oded.
P, NP, and NP-completeness : the basics of computational complexity / Oded Goldreich.

p. cm.
Includes bibliographical references and index.

ISBN 978-0-521-19248-4 (hardback) – ISBN 978-0-521-12254-2 (pbk.)
1. Computational complexity. 2. Computer algorithms. 3. Approximation theory.

4. Polynomials. I. Title.
QA267.7.G652 2010

005.1–dc22 2010023587

ISBN 978-0-521-19248-4 Hardback
ISBN 978-0-521-12254-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party Internet Web sites referred to in this publication and does not
guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


to Dana

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Contents

List of Figures page xi
Preface xiii
Overview xvii
To the Teacher xxi
Notations and Conventions xxv
Main Definitions and Results xxvii

1 Computational Tasks and Models 1
Teaching Notes 2

1.1 Representation 3
1.2 Computational Tasks 5

1.2.1 Search Problems 5
1.2.2 Decision Problems 6
1.2.3 Promise Problems (an Advanced Comment) 8

1.3 Uniform Models (Algorithms) 8
1.3.1 Overview and General Principles 9
1.3.2 A Concrete Model: Turing Machines 11

1.3.2.1 The Actual Model 12
1.3.2.2 The Church-Turing Thesis 16

1.3.3 Uncomputable Functions 18
1.3.3.1 On the Existence of Uncomputable Functions 18
1.3.3.2 The Halting Problem 19
1.3.3.3 A Few More Undecidability Results 21

1.3.4 Universal Algorithms 22
1.3.4.1 The Existence of Universal Algorithms 23
1.3.4.2 A Detour: Kolmogorov Complexity 24

1.3.5 Time (and Space) Complexity 26
1.3.6 Oracle Machines and Turing-Reductions 29

vii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


viii Contents

1.3.7 Restricted Models 31
1.4 Non-Uniform Models (Circuits and Advice) 31

1.4.1 Boolean Circuits 32
1.4.1.1 The Basic Model 32
1.4.1.2 Circuit Complexity 35

1.4.2 Machines That Take Advice 36
1.4.3 Restricted Models 37

1.4.3.1 Boolean Formulae 38
1.4.3.2 Other Restricted Classes of Circuits 39

1.5 Complexity Classes 40
Exercises 41

2 The P versus NP Question 48
Teaching Notes 49

2.1 Efficient Computation 50
2.2 The Search Version: Finding versus Checking 53

2.2.1 The Class P as a Natural Class of Search Problems 54
2.2.2 The Class NP as Another Natural Class of Search

Problems 56
2.2.3 The P versus NP Question in Terms of Search Problems 57

2.3 The Decision Version: Proving versus Verifying 58
2.3.1 The Class P as a Natural Class of Decision Problems 59
2.3.2 The Class NP and NP-Proof Systems 59
2.3.3 The P versus NP Question in Terms of Decision Problems 62

2.4 Equivalence of the Two Formulations 63
2.5 Technical Comments Regarding NP 65
2.6 The Traditional Definition of NP 66
2.7 In Support of P Being Different from NP 69
2.8 Philosophical Meditations 70

Exercises 71

3 Polynomial-time Reductions 74
Teaching Notes 75

3.1 The General Notion of a Reduction 75
3.1.1 The Actual Formulation 76
3.1.2 Special Cases 77
3.1.3 Terminology and a Brief Discussion 79

3.2 Reducing Optimization Problems to Search Problems 81
3.3 Self-Reducibility of Search Problems 83

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Contents ix

3.3.1 Examples 85
3.3.2 Self-Reducibility of NP-Complete Problems 87

3.4 Digest and General Perspective 88
Exercises 89

4 NP-Completeness 96
Teaching Notes 97

4.1 Definitions 98
4.2 The Existence of NP-Complete Problems 99

Bounded Halting and Non-Halting 102
4.3 Some Natural NP-Complete Problems 103

4.3.1 Circuit and Formula Satisfiability: CSAT and SAT 104
4.3.1.1 The NP-Completeness of CSAT 105
4.3.1.2 The NP-Completeness of SAT 109

4.3.2 Combinatorics and Graph Theory 113
4.3.3 Additional Properties of the Standard Reductions 120
4.3.4 On the Negative Application of NP-Completeness 121
4.3.5 Positive Applications of NP-Completeness 122

4.4 NP Sets That Are Neither in P nor NP-Complete 126
4.5 Reflections on Complete Problems 130

Exercises 133

5 Three Relatively Advanced Topics 142
Teaching Notes 142

5.1 Promise Problems 142
5.1.1 Definitions 143

5.1.1.1 Search Problems with a Promise 143
5.1.1.2 Decision Problems with a Promise 144
5.1.1.3 Reducibility Among Promise Problems 145

5.1.2 Applications and Limitations 146
5.1.2.1 Formulating Natural Computational Problems 146
5.1.2.2 Restricting a Computational Problem 147
5.1.2.3 Non-generic Applications 147
5.1.2.4 Limitations 148

5.1.3 The Standard Convention of Avoiding Promise Problems 149
5.2 Optimal Search Algorithms for NP 151
5.3 The Class coNP and Its Intersection with NP 154

Exercises 158

Historical Notes 165

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


x Contents

Epilogue: A Brief Overview of Complexity Theory 169

Appendix: Some Computational Problems 177
A.1 Graphs 177
A.2 Boolean Formulae 179

Bibliography 181
Index 183

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


List of Figures

0.1 Outline of the suggested course. page xxiv
1.1 A single step by a Turing machine. 12
1.2 Multiple steps of the machine depicted in Figure 1.1. 15
1.3 A circuit computing f (x1, x2, x3, x4) = (x1 ⊕ x2, x1 ∧ ¬ x2 ∧ x4). 34
1.4 Recursive construction of parity circuits and formulae. 38
1.5 A 3DNF formula computing x1 ⊕ x2 ⊕ x3. 39
2.1 Solving S by using a solver for R. 64
2.2 Solving R by using a solver for S ′

R . 65
3.1 The Cook-reduction that arises from a Karp-reduction. 78
3.2 The Cook-reduction that arises from a Levin-reduction. 80
3.3 The three proofs of Theorem 3.8. 95
4.1 Overview of the emulation of a computation by a circuit. 106
4.2 Consecutive computation steps of a Turing machine. 107
4.3 The idea underlying the reduction of CSAT to SAT. 111
4.4 The reduction to G3C – the clause gadget and its sub-gadget. 119
4.5 The reduction to G3C – connecting the gadgets. 120
4.6 The (non-generic) reductions presented in Section 4.3. 121
5.1 A schematic depiction of a promise problem. 145
5.2 The world view under P �= coNP ∩ NP �= NP . 158

xi

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Preface

The quest for efficiency is ancient and universal, as time and other resources
are always in shortage. Thus, the question of which tasks can be performed
efficiently is central to the human experience.

A key step toward the systematic study of the aforementioned question is a
rigorous definition of the notion of a task and of procedures for solving tasks.
These definitions were provided by computability theory, which emerged in
the 1930s. This theory focuses on computational tasks, considers automated
procedures (i.e., computing devices and algorithms) that may solve such tasks,
and studies the class of solvable tasks.

In focusing attention on computational tasks and algorithms, computability
theory has set the stage for the study of the computational resources (like
time) that are required by such algorithms. When this study focuses on the
resources that are necessary for any algorithm that solves a particular task
(or a task of a particular type), it is viewed as belonging to the theory of
Computational Complexity (also known as Complexity Theory). In contrast,
when the focus is on the design and analysis of specific algorithms (rather than
on the intrinsic complexity of the task), the study is viewed as belonging to a
related area that may be called Algorithmic Design and Analysis. Furthermore,
Algorithmic Design and Analysis tends to be sub-divided according to the
domain of mathematics, science, and engineering in which the computational
tasks arise. In contrast, Complexity Theory typically maintains a unity of
the study of computational tasks that are solvable within certain resources
(regardless of the origins of these tasks).

Complexity Theory is a central field of the theoretical foundations of com-
puter science (CS). It is concerned with the study of the intrinsic complexity
of computational tasks. That is, a typical Complexity theoretic study refers to
the computational resources required to solve a computational task (or a class
of such tasks), rather than referring to a specific algorithm or an algorithmic

xiii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


xiv Preface

schema. Actually, research in Complexity Theory tends to start with and focus
on the computational resources themselves, and addresses the effect of limiting
these resources on the class of tasks that can be solved. Thus, Computational
Complexity is the general study of what can be achieved within limited time
(and/or other limitations on natural computational resources).

The most famous question of Complexity Theory is the P-vs-NP Question.
This question can be phrased as asking whether finding solutions to certain
problems is harder than checking the correctness of solutions to these problems.
Indeed, this phrasing refers to so-called search problems (i.e., problems of
searching for solutions). An alternative phrasing, which refers to so-called
decision problems, asks whether or not deciding the validity of assertions can
be facilitated by the presentation of adequate proofs. Equivalently, the question
is whether discovering proofs (of the validity of assertions) is harder than
verifying their correctness; that is, is proving harder than verifying?

The fundamental nature of the P-vs-NP Question is evident in each of the
foregoing formulations, which are in fact equivalent. It is widely believed that
the answer to these equivalent formulations is that finding (resp., proving) is
harder than checking (resp., verifying); that is, it is believed that P is different
from NP, where P corresponds to the class of efficiently solvable problems and
NP corresponds to the seemingly wider class of problems allowing for efficient
verification of potential solutions.

Indeed, the P-vs-NP Question has been unresolved since the early 1970s, and
it is the author’s guess that the question will remain unresolved for centuries,
waiting for the development of a deeper understanding of the nature of efficient
computation. However, life will continue in the meantime, and it will bring
along a variety of NP-problems, where some of these problems will be placed
in P (by presenting efficient algorithms solving them) and others will resist
such attempts and will be conjectured to be too computationally hard to belong
to P. Actually, the latter description is not a wild guess; this has been the state
of affairs for several decades now.

At present, when faced with a seemingly hard problem in NP, we can only
hope to prove that it is not in P by assuming that NP is different from P. Thus,
we seek ways of proving that if the problem at hand is in P, then NP equals
P, which means that all problems in NP are in P. This is where the theory of
NP-completeness comes into the picture. Intuitively, a problem in NP is called
NP-complete if any efficient algorithm for it can be converted into an efficient
algorithm for any other problem in NP. It follows that if some NP-complete
problem is in P, then all problems in NP are in P. Hence, if NP is different
from P, then no NP-complete problem can be in P. Consequently, the P-vs-NP

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Preface xv

Question is captured by the question of whether or not an individual (NP-
complete) problem can be solved efficiently. Amazingly enough, NP-complete
problems exist, and furthermore, hundreds of natural computational problems
arising in many different areas of mathematics and science are NP-complete.

The aforementioned conversion of an efficient algorithm for one problem
into efficient algorithms for other problems is actually performed by a transla-
tion of the latter problems’ instances. Such a translation is called a reduction,
and the theory of NP-completeness is based on the notion of efficient reduc-
tions. In general, one computational problem is (efficiently) reducible to another
problem if it is possible to (efficiently) solve the former when provided access
to an (efficient) algorithm for solving the latter. A problem (in NP) is NP-
complete if any problem in NP is efficiently reducible to it, which means that
each individual NP-complete problem “encodes” all problems in NP. The fact
that NP-complete problems exist, let alone in such an abundance and variety,
is indeed amazing.

Since its discovery, NP-completeness has been used as the main tool by
which the intrinsic complexity of certain problems is demonstrated. A vast
number of NP-completeness results have been discovered since the early 1970s.
These discoveries have been guiding theoretical research as well as technologi-
cal development by indicating when one needs to relax computational problems
in order to obtain efficient procedures. This impact is neither confined to com-
puter science nor to the need to solve some computational problems. It typically
occurs when researchers or engineers seek a simple characterization of objects
that satisfy some property, whereas it turns out that deciding whether a given
object has this property is an NP-complete problem. Needless to say, in such
a case, no simple characterization is likely to exist, and so one better abandon
the search for it. Indeed, diverse scientific disciplines, which were unsuccess-
fully struggling with some of their internal questions, came to realize that these
questions are inherently difficult since they are closely related to computational
problems that are NP-complete.

The Current Book. The main focus of the current book is on the P-vs-NP
Question and on the theory of NP-completeness. Indeed, a large portion of
the book is devoted to presenting and studying the various formulations of the
P-vs-NP Question. This portion may be viewed as a mathematical articulation
of the intuitive gap between searching for solutions and checking their validity
(or between proving theorems and verifying the correctness of proofs). Another
large portion of the book is devoted to the presentation of the theory of NP-
completeness, while providing a treatment of the general notion of efficient

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


xvi Preface

reductions between computational problems. This portion may be viewed as a
mathematical articulation of the daily notion of a “reduction” (i.e., solving one
problem by using a known procedure for another problem), augmented with
the fundamental and surprising feature of “universality” (i.e., the existence of
complete problems to which all problems can be reduced).

The book, which includes adequate preliminaries regarding computational
problems and computational models, aims to provide a wide perspective on the
issues in its core. For example, the treatment of efficient reductions goes beyond
the minimum that suffices for a presentation of the theory of NP-completeness,
and this feature supports the study of the relative complexity of search and
decision problems. In general, the book is believed to present the very basics of
Complexity Theory, while bearing in mind that most readers do not intend to
specialize in Complexity Theory (and yet hoping that some will be motivated
to do so).

Relation to a Different Book by the Author. The current book is a significant
revision of Chapter 2 (and Section 1.2) of the author’s book Computational
Complexity: A Conceptual Perspective [13]. The revision was aimed at mak-
ing the book more friendly to the novice. In particular, numerous technical
expositions were further detailed and many exercises were added.

Web Site for Notices Regarding This Book. The author intends to maintain
a Web site listing corrections of various types. The location of the site is

http://www.wisdom.weizmann.ac.il/∼oded/bc-book.html

Acknowledgments. The author is grateful to Asilata Bapat and Michael Forbes
for their careful reading of a draft of this book and for the numerous corrections
and suggestions that they provided.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Overview

This book starts by providing the relevant background on computability theory,
which is the setting in which Complexity theoretic questions are being studied.
Most importantly, this preliminary chapter (i.e., Chapter 1) provides a treatment
of central notions, such as search and decision problems, algorithms that solve
such problems, and their complexity. Special attention is given to the notion of
a universal algorithm.

The main part of this book (i.e., Chapters 2–5) focuses on the P-vs-NP Ques-
tion and on the theory of NP-completeness. Additional topics covered in this
part include the general notion of an efficient reduction (with a special empha-
sis on reductions of search problems to corresponding decision problems), the
existence of problems in NP that are neither NP-complete nor in P, the class
coNP, optimal search algorithms, and promise problems. A brief overview of
this main part follows.

The P-vs-NP Question. Loosely speaking, the P-vs-NP Question refers to
search problems for which the correctness of solutions can be efficiently
checked (i.e., there is an efficient algorithm that given a solution to a given
instance determines whether or not the solution is correct). Such search prob-
lems correspond to the class NP, and the P-vs-NP Question corresponds to
whether or not all these search problems can be solved efficiently (i.e., is there
an efficient algorithm that given an instance finds a correct solution). Thus, the
P-vs-NP Question can be phrased as asking whether finding solutions is harder
than checking the correctness of solutions.

An alternative formulation, in terms of decision problems, refers to asser-
tions that have efficiently verifiable proofs (of relatively short length). Such
sets of assertions also correspond to the class NP, and the P-vs-NP Question
corresponds to whether or not proofs for such assertions can be found effi-
ciently (i.e., is there an efficient algorithm that given an assertion determines

xvii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


xviii Overview

its validity and/or finds a proof for its validity?). Thus, the P-vs-NP Question
can also be phrased as asking whether discovering proofs is harder than veri-
fying their correctness; that is, is proving harder than verifying (or are proofs
valuable at all).

In these equivalent formulations of the P-vs-NP Question, P corresponds to
the class of efficiently solvable problems, whereas NP corresponds to a natural
class of problems for which it is reasonable to seek efficient solvability (i.e.,
NP corresponds to the seemingly wider class of problems allowing for efficient
verification of potential solutions). We also note that in both cases, equality
between P and NP contradicts our intuitions regarding the notions that underlie
the formulation of NP (i.e., the notions of solving search problems and proving
theorems).

Indeed, it is widely believed that the answer to these two equivalent for-
mulations of the P-vs-NP Question is that P is different from NP; that is,
finding (resp., discovering) is harder than checking (resp., verifying). The fact
that this natural conjecture is unsettled seems to be one of the big sources of
frustration of Complexity Theory. The author’s opinion, however, is that this
feeling of frustration is unjustified and is rooted in unrealistic expectations (i.e.,
naive underestimations of the difficulty of relating complexity classes of such
a nature). In any case, at present, when faced with a seemingly hard problem
in NP, we cannot expect to prove that the problem is not in P unconditionally.
The best we can expect is a conditional proof that the said problem is not in
P, based on the assumption that NP is different from P. The contrapositive is
proving that if the said problem is in P, then so is any problem in NP (i.e., NP
equals P). The theory of NP-completeness captures this idea.

NP-Completeness. The theory of NP-completeness is based on the notion
of an efficient reduction, which is a relation between computational problems.
Loosely speaking, one computational problem is efficiently reducible to another
problem if it is possible to efficiently solve the former when provided with an
(efficient) algorithm for solving the latter. Thus, the first problem is not harder
to solve than the second one. A problem (in NP) is NP-complete if any problem
in NP is efficiently reducible to it, which means that the first problem “encodes”
all problems in NP (and so, in some sense, is the hardest among them). Indeed,
the fate of the entire class NP (with respect to inclusion in P) rests with each
individual NP-complete problem. In particular, showing that a problem is NP-
complete implies that this problem is not in P unless NP equals P.

The fact that NP-complete problems can be defined does not mean that they
exist. Indeed, the ability of an individual problem to encode all problems in a
class as diverse as NP is unfamiliar in daily life, and a layperson is likely to guess

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Overview xix

that such a phenomenon is self-contradictory (especially when being told that
the complete problem has to be in the same class). Nevertheless, NP-complete
problems exist, and furthermore, hundreds of natural computational problems
arising in many different areas of mathematics and science are NP-complete.

The list of known NP-complete problems includes finding a satisfiable
assignment to a given Boolean formula (or deciding whether such an assign-
ment exists), finding a 3-coloring of the vertices of a given graph (or deciding
whether such a coloring exists), and so on. The core of establishing the NP-
completeness of these problems is showing that each of them can encode any
other problem in NP. Thus, these demonstrations provide a method of encoding
instances of any NP problem as instances of the target NP-complete problem.

The Actual Organization. The foregoing paragraphs refer to material that
is covered in Chapters 2–4. Specifically, Chapter 2 is devoted to the P-vs-NP
Question per se, Chapter 3 is devoted to the notion of an efficient reduction, and
Chapter 4 is devoted to the theory of NP-completeness. We mention that NP-
complete problems are not the only seemingly hard problems in NP; that is, if P
is different from NP, then NP contains problems that are neither NP-complete
nor in P (see Section 4.4).

Additional related topics are discussed in Chapter 5. In particular, in Sec-
tion 5.2, it is shown that the P-vs-NP Question is not about inventing sophis-
ticated algorithms or ruling out their existence, but rather boils down to the
analysis of a single known algorithm; that is, we will present an optimal
search algorithm for any problem in NP, while having no clue about its time-
complexity.

Each of the main chapters (i.e., Chapters 1–4) starts with a short overview,
which sets the stage for the entire chapter. These overviews provide the basic
motivation for the notions defined, as well as a high-level summary of the main
results, and hence should not be skipped. The chapter’s overview is followed by
teaching notes, which assume familiarity with the material and thus are better
skipped by the novice. Each chapter ends with exercises, which are designed to
help verify the basic understanding of the main text (and not to test or inspire
creativity). In a few cases, exercises (augmented by adequate guidelines) are
used for presenting related advanced material.

The book also includes a short historical account (see Historical Notes), a
brief overview of Complexity Theory at large (see Epilogue), and a laconic
review of some popular computational problems (see Appendix).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


To the Teacher

According to a common opinion, the most important aspect of a scientific work
is the technical result that it achieves, whereas explanations and motivations
are merely redundancy introduced for the sake of “error correction” and/or
comfort. It is further believed that, as with a work of art, the interpretation of
the work should be left to the reader.

The author strongly disagrees with the aforementioned opinions, and argues
that there is a fundamental difference between art and science, and that this dif-
ference refers exactly to the meaning of a piece of work. Science is concerned
with meaning (and not with form), and in its quest for truth and/or understand-
ing, science follows philosophy (and not art). The author holds the opinion that
the most important aspects of a scientific work are the intuitive question that
it addresses, the reason that it addresses this question, the way it phrases the
question, the approach that underlies its answer, and the ideas that are embed-
ded in the answer. Following this view, it is important to communicate these
aspects of the work.

The foregoing issues are even more acute when it comes to Complexity
Theory, firstly because conceptual considerations seem to play an even more
central role in Complexity Theory than in other scientific fields. Secondly (and
even more importantly), Complexity Theory is extremely rich in conceptual
content. Thus, communicating this content is of primary importance, and failing
to do so misses the most important aspects of Complexity Theory.

Unfortunately, the conceptual content of Complexity Theory is rarely com-
municated (explicitly) in books and/or surveys of the area. The annoying (and
quite amazing) consequences are students who have only a vague understand-
ing of the meaning and general relevance of the fundamental notions and results
that they were taught. The author’s view is that these consequences are easy
to avoid by taking the time to explicitly discuss the meaning of definitions and
results. A closely related issue is using the “right” definitions (i.e., those that

xxi

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


xxii To the Teacher

reflect better the fundamental nature of the notion being defined) and emphasiz-
ing the (conceptually) “right” results. The current book is written accordingly;
two concrete and central examples follow.

The first example refers to the presentation of the P-vs-NP Question, where
we avoid using (polynomial-time) non-deterministic machines. We believe that
these fictitious “machines” have a negative effect from both a conceptual and a
technical point of view. The conceptual damage caused by defining NP in terms
of (polynomial-time) non-deterministic machines is that it is unclear why one
should care about what such machines can do. Needless to say, the reason to
care is clear when noting that these fictitious “machines” offer a (convenient
but rather slothful) way of phrasing fundamental issues. The technical damage
caused by using non-deterministic machines is that they tend to confuse the
students.

In contrast to using a fictitious model as a pivot, we define NP in terms of
proof systems such that the fundamental nature of this class and the P-vs-NP
Question are apparent. We also push to the front a formulation of the P-vs-NP
Question in terms of search problems. We believe that this formulation may
appeal to non-experts even more than the formulation of the P-vs-NP Question
in terms of decision problems. The aforementioned formulation refers to classes
of search problems that are analogous to the decision problem classes P and NP.
Specifically, we consider the classes PF and PC (see Definitions 2.2 and 2.3),
where PF consists of search problems that are efficiently solvable and PC
consists of search problems having efficiently checkable solutions.1

To summarize, we suggest presenting the P-vs-NP Question both in terms
of search problems and in terms of decision problems. Furthermore, when pre-
senting the decision-problem version, we suggest introducing NP by explicitly
referring to the terminology of proof systems (rather than using the more stan-
dard formulation, which is based on non-deterministic machines). We mention
that the formulation of NP as proof systems is also a better starting point for the
study of more advanced issues (e.g., counting classes, let alone probabilistic
proof systems).

Turning to the second example, which refers to the theory of NP-
completeness, we highlight a central recommendation regarding the presen-
tation of this theory. We believe that from a conceptual point of view, the
mere existence of NP-complete problems is an amazing fact. We thus suggest
emphasizing and discussing this fact per se. In particular, we recommend first
proving the mere existence of NP-complete problems, and only later establish-
ing the fact that certain natural problems such as SAT are NP-complete. Also,
when establishing the NP-completeness of SAT, we recommend decoupling

1 Indeed, these classes are often denoted FP and FNP , respectively.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


To the Teacher xxiii

the emulation of Turing machines by circuits (used for establishing the NP-
completeness of CSAT) from the emulation of circuits by formulae (used in the
reduction of CSAT to SAT).

Organization. In Chapter 1, we present the basic framework of Computational
Complexity, which serves as a stage for the rest of the book. In particular,
we formalize the notions of search and decision problems (see Section 1.2),
algorithms solving them (see Section 1.3), and their time complexity (see
Section 1.3.5). In Chapter 2, we present the two formulations of the P-vs-NP
Question. The general notion of a reduction is presented in Chapter 3, where we
highlight its applicability outside the domain of NP-completeness. In particular,
in Section 3.3 we treat reductions of search problems to corresponding decision
problems. Chapter 4 is devoted to the theory of NP-completeness, whereas
Chapter 5 treats three relatively advanced topics (i.e., the framework of promise
problems, the existence of optimal search algorithms for NP, and the class
coNP). The book ends with an Epilogue, which provides a brief overview of
Complexity Theory, and an Appendix that reviews some popular computational
problems (which are used as examples in the main text).

The Chapters’ Overviews. Each of the main chapters (i.e., Chapters 1–4)
starts with a short overview, which provides the basic motivation for the notions
defined in that chapter as well as a high-level summary of the chapter’s main
results. We suggest using these overviews as a basis for motivational discussions
preceding the actual technical presentation.

Additional Teaching Notes. Each chapter overview is followed by additional
teaching notes. These notes articulate various choices made in the presentation
of the material in the corresponding chapter.

Basing a Course on the Current Book. The book can serve as a basis for
an undergraduate course, which may be called Basics of Computational Com-
plexity. The core material for this course is provided by Chapters 1–4. Specifi-
cally, Sections 1.1–1.3 provide the required elements of computability theory,
and Chapters 2–4 provide the basic elements of Complexity Theory. In addition,
§1.4.1.1 and §1.4.3.1 (or, alternatively, Appendix A.2) provide preliminaries
regarding Boolean circuits and formulae that are required in Section 4.3 (which
refers to CSAT and SAT). For a schematic outline of the course, see Figure 0.1.

On the Choice of Additional (Basic and Advanced) Topics. As depicted in
Figure 0.1, depending on time constraints, we suggest augmenting the core
material with a selection of additional basic and advanced topics. As for

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


xxiv To the Teacher

topic sections
Elements of computability theory 1.1−1.3
The P-vs-NP Question 2.1−2.4, 2.7

Optional: definitional variations 2.5, 2.6
Polynomial-time reductions 3.1−3.3
The existence of NP-complete problems 4.1−4.2
Natural NP-complete problems (e.g., CSAT, SAT, VC) 4.3

Preliminaries on Boolean circuits and formulae 1.4.1, 1.4.3, A.2
Add’l basic topics: NPI, promise problems, optimal search 4.4, 5.1, 5.2
Advanced topics, if time permits from [13, 1]

Figure 0.1. Outline of the suggested course.

the basic topics, we recommend at least mentioning the class NPI, promise
problems, and the optimal search algorithms for NP. Regarding the choice of
advanced topics, we recommend an introduction to probabilistic proof sys-
tems. In our opinion, this choice is most appropriate because it provides nat-
ural extensions of the notion of an NP-proof system and offers very appeal-
ing positive applications of NP-completeness. Section 4.3.5 provides a brief
overview of probabilistic proof systems, while [13, Chap. 9] provides an exten-
sive overview (which transcends the needs of a basic complexity course).
Alternative advanced topics can be found in [13, 1].

A Revision of the CS Curriculum. The best integration of the aforementioned
course in undergraduate CS education calls for a revision of the standard CS
curriculum. Indeed, we believe that there is no real need for a semester-long
course in Computability (i.e., a course that focuses on what can be computed
rather than on what can be computed efficiently). Instead, CS undergraduates
should take a course in Computational Complexity, which should contain the
computability aspects that serve as a basis for the study of efficient computation
(i.e., the rest of this course). Specifically, the computability aspects should
occupy at most one-third of the course, and the focus should be on basic
complexity issues (captured by P, NP, and NP-completeness), which may be
augmented by a selection of some more advanced material. Indeed, such a
course can be based on the current book (possibly augmented by a selection of
some additional topics from, say, [13, 1]).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Notations and Conventions

Although we do try to avoid using various notations and conventions that may
not be familiar to the reader, some exceptions exists – especially in advanced
discussions. In order to be on the safe side, we list here some standard notations
and conventions that are (lightly) used in the book.

Standard Asymptotic Notation. When referring to integral functions, we use
the standard asymptotic notation; that is, for f, g : N → N, we write f = O(g)
if there exists a constant c > 0 such that f (n) ≤ c · g(n) holds for all sufficiently
large n ∈ N. We usually denote by “poly” an unspecified polynomial, and write
f (n) = poly(n) instead of “there exists a polynomial p such that f (n) ≤ p(n)
for all n ∈ N.”

Standard Combinatorial and Graph Theory Terms and Notation. For a

natural number n ∈ N, we denote [n]
def= {1, . . . , n}. Many of the computational

problems that we mention refer to finite (undirected) graphs. Such a graph,
denoted G = (V,E), consists of a set of vertices, denoted V , and a set of
edges, denoted E, which are unordered pairs of vertices. By default, graphs
are undirected, whereas directed graphs consist of vertices and directed edges,
where a directed edge is an order pair of vertices. For further background on
graphs and computational problems regarding graphs, the reader is referred to
Appendix A.1.

Typographic Conventions. We denote formally defined complexity classes by
calligraphic letters (e.g., NP), but we do so only after defining these classes.
Furthermore, when we wish to maintain some ambiguity regarding the specific
formulation of a class of problems, we use Roman font (e.g., NP may denote
either a class of search problems or a class of decision problems). Likewise,

xxv

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


xxvi Notations and Conventions

we denote formally defined computational problems by typewriter font (e.g.,
SAT). In contrast, generic problems and algorithms will be denoted by italic
font.

Our Use of Footnotes. In trying to accommodate a diverse spectrum of readers,
we use footnotes for presentation of additional details that most readers may
wish to skip but some readers may find useful. The most common usage of
footnotes is for providing additional technical details that may seem obvious
to most readers but be missed by some others. Occasionally, footnotes are also
used for advanced comments.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Main Definitions and Results

Following is a list of the main definitions and results presented in the book.
The list only provides a laconic description of each of the items, while a full
description can be found in the actual text (under the provided reference).
The list is ordered approximately according to the order of appearance of the
corresponding topics in the main text.

Search and Decision Problems. The former refer to finding solutions to given
instances, whereas the latter refer to determining whether the given instance
has a predetermined property. See Definitions 1.1 and 1.2, respectively.

Turing Machines. The model of Turing machines offers a relatively simple
formulation of the notion of an algorithm. See Section 1.3.2.

Theorem 1.4. The set of computable functions is countable, whereas the set
of all functions (from strings to strings) is not countable.

Theorem 1.5. The Halting Problem is undecidable.

Universal Algorithms. A universal machine computes the partial function u

that is defined on pairs (〈M〉, x) such that M halts on input x, in which case it
holds that u(〈M〉, x) = M(x). See Section 1.3.4.

Efficient and Inefficient. Efficiency is associated with polynomial-time com-
putations, whereas computations requiring more time are considered inefficient
or intractable (or infeasible). See Section 2.1.

The Class PF (Polynomial-time Find). The class of efficiently solvable
search problems. See Definition 2.2.

xxvii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


xxviii Main Definitions and Results

The Class PC (Polynomial-time Check). The class of search problems hav-
ing efficiently checkable solutions. See Definition 2.3.

The Notations SR and R(x) Associated with a Search Problem R. For any
search problem, R, we denote the set of solutions to the instance x by R(x)
(i.e., R(x) = {y : (x, y) ∈ R}), and denote the set of instances having solutions
by SR (i.e., SR = {x : R(x) �= ∅}).

The Class P . The class of efficiently solvable decision problems. See Defini-
tion 2.4.

The Class NP . The class of decision problems having efficiently verifiable
proof systems. See Definition 2.5.

Theorem 2.6. PC ⊆ PF if and only if P = NP .

The P-vs-NP Question. It is widely believed that P is different from NP. This
belief is supported by both philosophical and empirical considerations. See
Section 2.7.

The Traditional Definition of NP . Traditionally, NP is defined as the class
of sets that can be decided by a fictitious device called a non-deterministic
polynomial-time machine (which explains the source of the notation NP). See
Section 2.6.

Cook-reductions. A problem � is Cook-reducible to a problem �′ if � can
be solved efficiently when given access to any procedure (or oracle) that solves
the problem �′. See Definition 3.1.

Karp-reductions. A decision problem S is Karp-reducible to a decision prob-
lem S ′ if there exists a polynomial-time computable function f such that, for
every x, it holds that x ∈ S if and only if f (x) ∈ S ′. See Definition 3.3.

Levin-reductions. A search problem R is Levin-reducible to a search problem
R′ if there exists polynomial-time computable functions f and g such that (1) f

is a Karp-reduction of SR to SR′ , and (2) for every x ∈ SR and y ′ ∈ R′(f (x)) it
holds that (x, g(x, y ′)) ∈ R. See Definition 3.4.

Theorem 3.2. Every search problem in PC is Cook-reducible to some decision
problem in NP .

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484


Main Definitions and Results xxix

Self-reducibility of Search Problems. The decision implicit in a search prob-
lem R is deciding membership in the set SR , and R is called self-reducible if it
is Cook-reducible to SR . See Section 3.3.

NP-Completeness (of Decision Problems). A decision problem S is NP-

complete if (1) S is in NP , and (2) every decision problem in NP is Karp-
reducible to S. See Definition 4.1.

NP-Completeness of Search Problems. A search problem R is PC-complete
(or NP-complete) if (1) R is in PC, and (2) every search problem in PC is
Levin-reducible to R. See Definition 4.2.

Theorem 4.3. There exist NP-complete search and decision problems.

Theorems 4.5 and 4.6 (Also Known as Cook–Levin Theorem). Circuit sat-
isfiability (CSAT) and formula satisfiability (SAT) are NP-complete.

Proposition 4.4. If an NP-complete decision problem S is Karp-reducible
to a decision problem S ′ ∈ NP (resp., a PC-complete search problem R is
Levin-reducible to a search problem R′ ∈ PC), then S ′ is NP-complete (resp.,
R′ is PC-complete).

Theorem 4.12. Assuming NP �= P , there exist decision problems in NP \ P
that are not NP-complete (even when allowing Cook-reductions).

Promise Problems. Promise problems are natural generalizations of search
and decision problems that are obtained by explicitly specifying a set of legiti-
mate instances (rather than considering any string as a legitimate instance). See
Section 5.1.

Theorem 5.5. There exists an optimal algorithm for any candid search problem
in NP, where the candid search problem of the binary relation R consists of
finding solutions whenever they exist (and behaving arbitrarily otherwise; see
Definition 5.2).

Theorem 5.7. If every set in NP can be Cook-reduced to some set in NP ∩
coNP , then NP = coNP , where coNP = {{0, 1}∗ \ S : S ∈ NP}.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19248-4 - P, NP, and NP-Completeness: The Basics of Computational Complexity
Oded Goldreich
Frontmatter
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521192484

