CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-19229-3 — Solid Mechanics William F. Hosford Excerpt <u>More Information</u>

Stress and Strain

Figure 1.9. Mohr's circles for Example #1.2.

9

Solution: $\sigma_1, \sigma_2 = (\sigma_x + \sigma_y)/2 \pm \{[(\sigma_x - \sigma_y)/2]^2 + \tau_{xy}^2\}^{1/2} = 154.2, 55.8 \text{ MPa}, \sigma_3 = \sigma_z = 0$. Figure 1.9 is the Mohr's circle diagram. Note that the largest shear stress, $\tau_{\text{max}} = (\sigma_1 - \sigma_3)/2 = 77.1 \text{ MPa}$, is not in the 1–2 plane.

Strains

An infinitesimal normal strain is defined by the change of length, L, of a line:

$$\mathrm{d}\varepsilon = \mathrm{d}L/L. \tag{1.18}$$

Integrating from the initial length, L_o , to the current length, L,

$$\varepsilon = \int dL/L = \ln(L/L_o) \tag{1.19}$$

This finite form is called *true strain* (or *natural strain*, *logarithmic strain*). Alternatively, *engineering* or *nominal strain*, *e*, is defined as

$$e = \Delta L/L_o. \tag{1.20}$$

If the strains are small, then the engineering and true strains are nearly equal. Expressing $\varepsilon = \ln(L/L_o) = \ln(1+e)$ as a series expansion, $\varepsilon = e - e^2/2 + e^3/3! \dots$ so as $e \to 0$, $\varepsilon \to e$. This is illustrated in the following example.

EXAMPLE PROBLEM #1.3: Calculate the ratio of e/ε for several values of e.

Solution: $e/\varepsilon = e/\ln(1+e)$. Evaluating:

for $e = 0.001$,	$e/\varepsilon = 1.0005;$
for $e = 0.01$,	$e/\varepsilon = 1.005;$
for $e = 0.02$,	$e/\varepsilon = 1.010;$
for $e = 0.05$,	$e/\varepsilon = 1.025;$
for $e = 0.10$,	$e/\varepsilon = 1.049;$
for $e = 0.20$,	$e/\varepsilon = 1.097;$
for $e = 0.50$,	$e/\varepsilon = 1.233.$

Cambridge University Press & Assessment 978-0-521-19229-3 — Solid Mechanics William F. Hosford Excerpt More Information

Solid Mechanics

Note that the difference *e* and ε between is less than 1% for *e* < 0.02

There are several reasons that true strains are more convenient than engineering strains:

- 1. True strains for equivalent amounts of deformation in tension and compression are equal except for sign.
- 2. True strains are additive. For a deformation consisting of several steps, the overall strain is the sum of the strains in each step.
- 3. The volume change is related to the sum of the three normal strains. For constant volume, $\varepsilon_x + \varepsilon_y + \varepsilon_z = 0$.

These statements are not true for engineering strains, as illustrated in the following examples.

EXAMPLE PROBLEM #1.4: An element 1 cm long is extended to twice its initial length (2 cm) and then compressed to its initial length (1 cm).

- a. Find the true strains for the extension and compression.
- b. Find the engineering strains for the extension and compression.

Solution: a. During the extension, $\varepsilon = \ln(L/L_o) = \ln 2 = 0.693$, and during the compression $\varepsilon = \ln(L/L_o) = \ln(1/2) = -0.693$.

b. During the extension, $e = \Delta L/L_o = 1/1 = 1.0$, and during the compression $e = \Delta L/L_o = -1/2 = -0.5$.

Note that with engineering strains, the magnitude of strain to reverse the shape change is different.

EXAMPLE PROBLEM #1.5: A bar 10 cm long is elongated by (1) drawing to 15 cm, and then (2) drawing to 20 cm.

- a) Calculate the engineering strains for the two steps and compare the sum of these with the engineering strain calculated for the overall deformation.
- b) Repeat the calculation with true strains.

Solution: (a) For step 1, $e_1 = 5/10 = 0.5$; for step 2, $e_2 = 5/15 = 0.333$. The sum of these is 0.833, which is less than the overall strain, $e_{tot} = 10/10 = 1.00$

(b) For step 1, $\varepsilon_1 = \ln(15/10) = 0.4055$; for step 2, $\varepsilon_1 = \ln(20/15) = 0.2877$. The sum is 0.6931, and the overall strain is $\varepsilon_{tot} = \ln(15/10) + \ln(20/15) = \ln(20/10) = 0.6931$.

EXAMPLE PROBLEM #1.6: A block of initial dimensions L_{xo} , L_{yo} , L_{zo} is deformed so that the new dimensions are L_x , L_y , L_z . Express the volume strain, $\ln(V/V_o)$, in terms of the three true strains, ε_x , ε_y , ε_z .

10