Contents

Contributors

Preface

1 **Scaling Up Machine Learning: Introduction**
 Ron Bekkerman, Mikhail Bilenko, and John Langford
 1.1 Machine Learning Basics 2
 1.2 Reasons for Scaling Up Machine Learning 3
 1.3 Key Concepts in Parallel and Distributed Computing 6
 1.4 Platform Choices and Trade-Offs 7
 1.5 Thinking about Performance 9
 1.6 Organization of the Book 10
 1.7 Bibliographic Notes 17
 References 19

2 **MapReduce and Its Application to Massively Parallel Learning of Decision Tree Ensembles**
 Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo
 2.1 Preliminaries 24
 2.2 Example of PLANET 30
 2.3 Technical Details 33
 2.4 Learning Ensembles 38
 2.5 Engineering Issues 39
 2.6 Experiments 41
 2.7 Related Work 44
 2.8 Conclusions 46
 Acknowledgments 47
 References 47

© in this web service Cambridge University Press
www.cambridge.org
3 Large-Scale Machine Learning Using DryadLINQ 49
Mihai Budiu, Dennis Fetterly, Michael Isard, Frank McSherry, and Yuan Yu
3.1 Manipulating Datasets with LINQ 49
3.2 \(k\)-Means in LINQ 52
3.3 Running LINQ on a Cluster with DryadLINQ 53
3.4 Lessons Learned 65
References 67

4 IBM Parallel Machine Learning Toolbox 69
Edwin Pednault, Elad Yom-Tov, and Amol Ghoting
4.1 Data-Parallel Associative-Commutative Computation 70
4.2 API and Control Layer 71
4.3 API Extensions for Distributed-State Algorithms 76
4.4 Control Layer Implementation and Optimizations 77
4.5 Parallel Kernel \(k\)-Means 79
4.6 Parallel Decision Tree 80
4.7 Parallel Frequent Pattern Mining 83
4.8 Summary 86
References 87

5 Uniformly Fine-Grained Data-Parallel Computing for Machine Learning Algorithms 89
Meichun Hsu, Ren Wu, and Bin Zhang
5.1 Overview of a GP-GPU 91
5.2 Uniformly Fine-Grained Data-Parallel Computing on a GPU 93
5.3 The \(k\)-Means Clustering Algorithm 97
5.4 The \(k\)-Means Regression Clustering Algorithm 99
5.5 Implementations and Performance Comparisons 102
5.6 Conclusions 105
References 105

Part Two Supervised and Unsupervised Learning Algorithms

6 PSVM: Parallel Support Vector Machines with Incomplete Cholesky Factorization 109
Edward Y. Chang, Hongjie Bai, Kaihua Zhu, Hao Wang, Jian Li, and Zhihuan Qiu
6.1 Interior Point Method with Incomplete Cholesky Factorization 112
6.2 PSVM Algorithm 114
6.3 Experiments 121
6.4 Conclusion 125
Acknowledgments 125
References 125

7 Massive SVM Parallelization Using Hardware Accelerators 127
Igor Durdanovic, Eric Cosatto, Hans Peter Graf, Srihari Cadambi, Venkata Jakula, Srimat Chakradhar, and Abhinandan Majumdar
7.1 Problem Formulation 128
7.2 Implementation of the SMO Algorithm 131
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Micro Parallelization: Related Work</td>
<td>132</td>
</tr>
<tr>
<td>7.4</td>
<td>Previous Parallelizations on Multicore Systems</td>
<td>133</td>
</tr>
<tr>
<td>7.5</td>
<td>Micro Parallelization: Revisited</td>
<td>136</td>
</tr>
<tr>
<td>7.6</td>
<td>Massively Parallel Hardware Accelerator</td>
<td>137</td>
</tr>
<tr>
<td>7.7</td>
<td>Results</td>
<td>145</td>
</tr>
<tr>
<td>7.8</td>
<td>Conclusion</td>
<td>146</td>
</tr>
<tr>
<td>References</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Large-Scale Learning to Rank Using Boosted Decision Trees</td>
<td>148</td>
</tr>
<tr>
<td>8.1</td>
<td>Related Work</td>
<td>149</td>
</tr>
<tr>
<td>8.2</td>
<td>LambdaMART</td>
<td>151</td>
</tr>
<tr>
<td>8.3</td>
<td>Approaches to Distributing LambdaMART</td>
<td>153</td>
</tr>
<tr>
<td>8.4</td>
<td>Experiments</td>
<td>158</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusions and Future Work</td>
<td>168</td>
</tr>
<tr>
<td>8.6</td>
<td>Acknowledgments</td>
<td>169</td>
</tr>
<tr>
<td>References</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>The Transform Regression Algorithm</td>
<td>170</td>
</tr>
<tr>
<td>9.1</td>
<td>Classification, Regression, and Loss Functions</td>
<td>171</td>
</tr>
<tr>
<td>9.2</td>
<td>Background</td>
<td>172</td>
</tr>
<tr>
<td>9.3</td>
<td>Motivation and Algorithm Description</td>
<td>173</td>
</tr>
<tr>
<td>9.4</td>
<td>TReg Expansion: Initialization and Termination</td>
<td>177</td>
</tr>
<tr>
<td>9.5</td>
<td>Model Accuracy Results</td>
<td>184</td>
</tr>
<tr>
<td>9.6</td>
<td>Parallel Performance Results</td>
<td>186</td>
</tr>
<tr>
<td>9.7</td>
<td>Summary</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Parallel Belief Propagation in Factor Graphs</td>
<td>190</td>
</tr>
<tr>
<td>10.1</td>
<td>Belief Propagation in Factor Graphs</td>
<td>191</td>
</tr>
<tr>
<td>10.2</td>
<td>Shared Memory Parallel Belief Propagation</td>
<td>195</td>
</tr>
<tr>
<td>10.3</td>
<td>Multicore Performance Comparison</td>
<td>209</td>
</tr>
<tr>
<td>10.4</td>
<td>Parallel Belief Propagation on Clusters</td>
<td>210</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusion</td>
<td>214</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Distributed Gibbs Sampling for Latent Variable Models</td>
<td>217</td>
</tr>
<tr>
<td>11.1</td>
<td>Latent Variable Models</td>
<td>217</td>
</tr>
<tr>
<td>11.2</td>
<td>Distributed Inference Algorithms</td>
<td>220</td>
</tr>
<tr>
<td>11.3</td>
<td>Experimental Analysis of Distributed Topic Modeling</td>
<td>224</td>
</tr>
<tr>
<td>11.4</td>
<td>Practical Guidelines for Implementation</td>
<td>229</td>
</tr>
<tr>
<td>11.5</td>
<td>A Foray into Distributed Inference for Bayesian Networks</td>
<td>231</td>
</tr>
<tr>
<td>11.6</td>
<td>Conclusion</td>
<td>236</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>237</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

12 Large-Scale Spectral Clustering with MapReduce and MPI

Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Edward Y. Chang

12.1 Spectral Clustering
12.2 Spectral Clustering Using a Sparse Similarity Matrix
12.3 Parallel Spectral Clustering (PSC) Using a Sparse Similarity Matrix
12.4 Experiments
12.5 Conclusions

References

13 Parallelizing Information-Theoretic Clustering Methods

Ron Bekkerman and Martin Scholz

13.1 Information-Theoretic Clustering
13.2 Parallel Clustering
13.3 Sequential Co-clustering
13.4 The DataLoom Algorithm
13.5 Implementation and Experimentation
13.6 Conclusion

References

Part Three Alternative Learning Settings

14 Parallel Online Learning

Daniel Hsu, Nikos Karampatziakis, John Langford, and Alex J. Smola

14.1 Limits Due to Bandwidth and Latency
14.2 Parallelization Strategies
14.3 Delayed Update Analysis
14.4 Parallel Learning Algorithms
14.5 Global Update Rules
14.6 Experiments
14.7 Conclusion

References

15 Parallel Graph-Based Semi-Supervised Learning

Jeff Bilmes and Amarnag Subramanya

15.1 Scaling SSL to Large Datasets
15.2 Graph-Based SSL
15.3 Dataset: A 120-Million-Node Graph
15.4 Large-Scale Parallel Processing
15.5 Discussion

References

16 Distributed Transfer Learning via Cooperative Matrix Factorization

Evan Xiang, Nathan Liu, and Qiang Yang

16.1 Distributed Coalitional Learning
16.2 Extension of DisCo to Classification Tasks
CONTENTS

16.3 Conclusion 350
References 350

17 Parallel Large-Scale Feature Selection 352
Jeremy Kubica, Sameer Singh, and Daria Sorokina
17.1 Logistic Regression 353
17.2 Feature Selection 354
17.3 Parallelizing Feature Selection Algorithms 358
17.4 Experimental Results 363
17.5 Conclusions 368
References 368

Part Four Applications

18 Large-Scale Learning for Vision with GPUs 373
Adam Coates, Rajat Raina, and Andrew Y. Ng
18.1 A Standard Pipeline 374
18.2 Introduction to GPUs 377
18.3 A Standard Approach Scaled Up 380
18.4 Feature Learning with Deep Belief Networks 388
18.5 Conclusion 395
References 395

19 Large-Scale FPGA-Based Convolutional Networks 399
Clément Farabet, Yann LeCun, Koray Kavukcuoglu, Berin Martini, Polina Akselrod, Selcuk Talay, and Eugenio Culurciello
19.1 Learning Internal Representations 400
19.2 A Dedicated Digital Hardware Architecture 405
19.3 Summary 416
References 417

20 Mining Tree-Structured Data on Multicore Systems 420
Shirish Tatikonda and Srinivasan Parthasarathy
20.1 The Multicore Challenge 422
20.2 Background 423
20.3 Memory Optimizations 427
20.4 Adaptive Parallelization 431
20.5 Empirical Evaluation 437
20.6 Discussion 442
Acknowledgments 443
References 443

21 Scalable Parallelization of Automatic Speech Recognition 446
Jike Chong, Ekaterina Gonina, Kisun You, and Kurt Keutzer
21.1 Concurrency Identification 450
21.2 Software Architecture and Implementation Challenges 452
21.3 Multicore and Manycore Parallel Platforms 454
21.4 Multicore Infrastructure and Mapping 455
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5 The Manycore Implementation</td>
<td>459</td>
</tr>
<tr>
<td>21.6 Implementation Profiling and Sensitivity Analysis</td>
<td>462</td>
</tr>
<tr>
<td>21.7 Application-Level Optimization</td>
<td>464</td>
</tr>
<tr>
<td>21.8 Conclusion and Key Lessons</td>
<td>467</td>
</tr>
<tr>
<td>References</td>
<td>468</td>
</tr>
</tbody>
</table>

Subject Index
471