Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

CHAPTER 1

Scaling Up Machine Learning:
Introduction

Ron Bekkerman, Mikhail Bilenko, and John Langford

Distributed and parallel processing of very large datasets has been employed for decades
in specialized, high-budget settings, such as financial and petroleum industry applica-
tions. Recent years have brought dramatic progress in usability, cost effectiveness, and
diversity of parallel computing platforms, with their popularity growing for a broad set
of data analysis and machine learning tasks.

The current rise in interest in scaling up machine learning applications can be
partially attributed to the evolution of hardware architectures and programming frame-
works that make it easy to exploit the types of parallelism realizable in many learning
algorithms. A number of platforms make it convenient to implement concurrent pro-
cessing of data instances or their features. This allows fairly straightforward paralleliza-
tion of many learning algorithms that view input as an unordered batch of examples
and aggregate isolated computations over each of them.

Increased attention to large-scale machine learning is also due to the spread of very
large datasets across many modern applications. Such datasets are often accumulated
on distributed storage platforms, motivating the development of learning algorithms
that can be distributed appropriately. Finally, the proliferation of sensing devices that
perform real-time inference based on high-dimensional, complex feature representa-
tions drives additional demand for utilizing parallelism in learning-centric applications.
Examples of this trend include speech recognition and visual object detection becoming
commonplace in autonomous robots and mobile devices.

The abundance of distributed platform choices provides a number of options for im-
plementing machine learning algorithms to obtain efficiency gains or the capability to
process very large datasets. These options include customizable integrated circuits (e.g.,
Field-Programmable Gate Arrays — FPGAs), custom processing units (e.g., general-
purpose Graphics Processing Units — GPUs), multiprocessor and multicore parallelism,
High-Performance Computing (HPC) clusters connected by fast local networks, and
datacenter-scale virtual clusters that can be rented from commercial cloud computing
providers. Aside from the multiple platform options, there exists a variety of program-
ming frameworks in which algorithms can be implemented. Framework choices tend

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

2 1 SCALING UP MACHINE LEARNING: INTRODUCTION

to be particularly diverse for distributed architectures, such as clusters of commodity
PCs.

The wide range of platforms and frameworks for parallel and distributed comput-
ing presents both opportunities and challenges for machine learning scientists and
engineers. Fully exploiting the available hardware resources requires adapting some
algorithms and redesigning others to enable their concurrent execution. For any pre-
diction model and learning algorithm, their structure, dataflow, and underlying task
decomposition must be taken into account to determine the suitability of a particular
infrastructure choice.

Chapters making up this volume form a representative set of state-of-the-art solutions
that span the space of modern parallel computing platforms and frameworks for a
variety of machine learning algorithms, tasks, and applications. Although itis infeasible
to cover every existing approach for every platform, we believe that the presented
set of techniques covers most commonly used methods, including the popular “top
performers” (e.g., boosted decision trees and support vector machines) and common
“baselines” (e.g., k-means clustering).

Because most chapters focus on a single choice of platform and/or framework, the
rest of this introduction provides the reader with unifying context: a brief overview
of machine learning basics and fundamental concepts in parallel and distributed com-
puting, a summary of typical task and application scenarios that require scaling up
learning, and thoughts on evaluating algorithm performance and platform trade-offs.
Following these are an overview of the chapters and bibliography notes.

1.1 Machine Learning Basics

Machine learning focuses on constructing algorithms for making predictions from
data. A machine learning task aims to identify (to learn) a function f: X —) that
maps input domain X (of data) onto output domain) (of possible predictions). The
function f is selected from a certain function class, which is different for each family
of learning algorithms. Elements of X and) are application-specific representations
of data objects and predictions, respectively.

Two canonical machine learning settings are supervised learning and unsupervised
learning. Supervised learning algorithms utilize training data to construct a prediction
function f, which is subsequently applied to fest instances. Typically, training data is
provided in the form of labeled examples (x,y) € X x Y, where x is a data instance
and y is the corresponding ground truth prediction for x.

The ultimate goal of supervised learning is to identify a function f that produces
accurate predictions on test data. More formally, the goal is to minimize the prediction
error (loss) function/ : Y x) — R, which quantifies the difference between any f (x)
and y — the predicted output of x and its ground truth label. However, the loss cannot
be minimized directly on test instances and their labels because they are typically
unavailable at training time. Instead, supervised learning algorithms aim to construct
predictive functions that generalize well to previously unseen data, as opposed to
performing optimally just on the given training set, that is, overfitting the training data.

The most common supervised learning setting is induction, where it is assumed that
each training and test example (x, y) is sampled from some unknown joint probability

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

1.2 REASONS FOR SCALING UP MACHINE LEARNING 3

distribution P over X x). The objective is to find f that minimizes expected loss
E¢ y~p [(f(x),y). Because the joint distribution P is unknown, expected loss cannot
be minimized in closed form; hence, learning algorithms approximate it based on
training examples. Additional supervised learning settings include semi-supervised
learning (where the input data consists of both labeled and unlabeled instances),
transfer learning, and online learning (see Section 1.6.3).

Two classic supervised learning tasks are classification and regression. In classifica-
tion, the output domain is a finite discrete set of categories (classes), Y = {ci, ..., ¢t},
whereas in regression the output domain is the set of real numbers,) = R. More
complex output domains are explored within advanced learning frameworks, such as
structured learning (Bakir et al., 2007).

The simplest classification scenario is binary, in which there are two classes. Let
us consider a small example. Assume that the task is to learn a function that predicts
whether an incoming email message is spam or not. A common way to represent textual
messages is as large, sparse vectors, in which every entry corresponds to a vocabulary
word, and non-zero entries represent words that are present in the message. The label
can be represented as 1 for spam and —1 for nonspam. With this representation, it
is common to learn a vector of weights w optimizing f(x) = sign (Zl wixi) SO as to
predict the label.

The most prominent example of unsupervised learning is data clustering. In clus-
tering, the goal is to construct a function f that partitions an unlabeled dataset into
k = || clusters, with) being the set of cluster indices. Data instances assigned to the
same cluster should presumably be more similar to each other than to data instances
assigned to any other cluster. There are many ways to define similarity between data
instances; for example, for vector data, (inverted) Euclidean distance and cosine simi-
larity are commonly used. Clustering quality is often measured against a dataset with
existing class labels that are withheld during clustering: a quality measure penalizes f
if it assigns instances of the same class to different clusters and instances of different
classes to the same cluster.

We note that both supervised and unsupervised learning settings distinguish between
learning and inference tasks, where learning refers to the process of identifying the
prediction function f, while inference refers to computing f(x) on a data instance x.
For many learning algorithms, inference is a component of the learning process, as
predictions of some interim candidate f’ on the training data are used in the search
for the optimal f. Depending on the application domain, scaling up may be required
for either the learning or the inference algorithm, and chapters in this book present
numerous examples of speeding up both.

1.2 Reasons for Scaling Up Machine Learning

There are a number of settings where a practitioner could find the scale of a ma-
chine learning task daunting for single-machine processing and consider employing
parallelization. Such settings are characterized by:

1. Large number of data instances: In many domains, the number of potential training
examples is extremely large, making single-machine processing infeasible.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

4 1 SCALING UP MACHINE LEARNING: INTRODUCTION

2. High input dimensionality: In some applications, data instances are represented by a
very large number of features. Machine learning algorithms may partition computation
across the set of features, which allows scaling up to lengthy data representations.

3. Model and algorithm complexity: A number of high-accuracy learning algorithms
either rely on complex, nonlinear models, or employ computationally expensive subrou-
tines. In both cases, distributing the computation across multiple processing units can
be the key enabler for learning on large datasets.

4. Inference time constraints: Applications that involve sensing, such as robot navigation
or speech recognition, require predictions to be made in real time. Tight constraints on
inference speed in such settings invite parallelization of inference algorithms.

5. Prediction cascades: Applications that require sequential, interdependent predictions
have highly complex joint output spaces, and parallelization can significantly speed up
inference in such settings.

6. Model selection and parameter sweeps: Tuning hyper-parameters of learning algo-
rithms and statistical significance evaluation require multiple executions of learning and
inference. Fortunately, these procedures belong to the category of so-called embarrass-
ingly parallelizable applications, naturally suited for concurrent execution.

The following sections discuss each of these scenarios in more detail.

1.2.1 Large Number of Data Instances

Datasets that aggregate billions of events per day have become common in a number
of domains, such as internet and finance, with each event being a potential input to a
learning algorithm. Also, more and more devices include sensors continuously logging
observations that can serve as training data. Each data instance may have, for example,
thousands of non-zero features on average, resulting in datasets of 10!? instance—feature
pairs per day. Even if each feature takes only 1 byte to store, datasets collected over
time can easily reach hundreds of terabytes.

The preferred way to effectively process such datasets is to combine the distributed
storage and bandwidth of a cluster of machines. Several computational frameworks
have recently emerged to ease the use of large quantities of data, such as MapReduce
and DryadLLINQ, used in several chapters in this book. Such frameworks combine the
ability to use high-capacity storage and execution platforms with programming via
simple, naturally parallelizable language primitives.

1.2.2 High Input Dimensionality

Machine learning and data mining tasks involving natural language, images, or video
can easily have input dimensionality of 10° or higher, far exceeding the comfortable
scale of 10 — 1,000 features considered common until recently. Although data in some
of these domains is sparse, that is not always the case; sparsity is also lost in the
parameter space of many algorithms. Parallelizing the computation across features can
thus be an attractive pathway for scaling up computation to richer representations, or
just for speeding up algorithms that naturally iterate over features, such as decision
trees.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

1.2 REASONS FOR SCALING UP MACHINE LEARNING 5

1.2.3 Model and Algorithm Complexity

Data in some domains has inherently nonlinear structure with respect to the basic fea-
tures (e.g., pixels or words). Models that employ highly nonlinear representations, such
as decision tree ensembles or multi-layer (deep) networks, can significantly outperform
simpler algorithms in such applications. Although feature engineering can yield high
accuracies with computationally cheap linear models in these domains, there is a grow-
ing interest in learning as automatically as possible from the base representation. A
common characteristic of algorithms that attempt this is their substantial computational
complexity. Although the training data may easily fit on one machine, the learning pro-
cess may simply be too slow for a reasonable development cycle. This is also the case
for some learning algorithms, the computational complexity of which is superlinear in
the number of training examples.

For problems of this nature, parallel multinode or multicore implementations appear
viable and have been employed successfully, allowing the use of complex algorithms
and models for larger datasets. In addition, coprocessors such as GPUs have also been
employed successfully for fast transformation of the original input space.

1.2.4 Inference Time Constraints

The primary means for reducing the testing time is via embarrassingly parallel replica-
tion. This approach works well for settings where throughput is the primary concern —
the number of evaluations to be done is very large. Consider, for example, evaluating
10'% emails per day in a spam filter, which is not expected to output results in real time,
yet must not become backlogged.

Inference latency is generally a more stringent concern compared to throughput.
Latency issues arise in any situation where systems are waiting for a prediction, and
the overall application performance degrades rapidly with latency. For instance, this
occurs for a car-driving robot making path planning decisions based on several sensors,
or an online news provider that aims to improve user experience by selecting suggested
stories using on-the-fly personalization.

Constraints on throughput and latency are not entirely compatible — for example,
data pipelining trades throughput for latency. However, for both of them, utilizing
highly parallelized hardware architectures such as GPUs or FPGAs has been found
effective.

1.2.5 Prediction Cascades

Many real-world problems such as object tracking, speech recognition, and machine
translation require performing a sequence of interdependent predictions, forming pre-
diction cascades. If a cascade is viewed as a single inference task, it has a large
joint output space, typically resulting in very high computational costs due to in-
creased computational complexity. Interdependencies between the prediction tasks are
typically tackled by stagewise parallelization of individual tasks, along with adaptive
task management, as illustrated by the approach of Chapter 21 to speech recognition.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

6 1 SCALING UP MACHINE LEARNING: INTRODUCTION

1.2.6 Model Selection and Parameter Sweeps

The practice of developing, tuning, and evaluating learning algorithms relies on work-
flow that is embarrassingly parallel: it requires no intercommunication between the
tasks with independent executions on the same dataset. Two particular processes of
this nature are parameter sweeps and statistical significance testing. In parameter
sweeps, the learning algorithm is run multiple times on the same dataset with differ-
ent settings, followed by evaluation on a validation set. During statistical significance
testing procedures such as cross-validation or bootstrapping, training and testing is per-
formed repeatedly on different dataset subsets, with results aggregated for subsequent
measurement of statistical significance. Usefulness of parallel platforms is obvious for
these tasks, as they can be easily performed concurrently without the need to parallelize
actual learning and inference algorithms.

1.3 Key Concepts in Parallel and Distributed Computing

Performance gains attainable in machine learning applications by employing parallel
and distributed systems are driven by concurrent execution of tasks that are otherwise
performed serially. There are two major directions in which this concurrency is real-
ized: data parallelism and task parallelism. Data parallelism refers to simultaneous
processing of multiple inputs, whereas task parallelism is achieved when algorithm
execution can be partitioned into segments, some of which are independent and hence
can be executed concurrently.

1.3.1 Data Parallelism

Data parallelism refers to executing the same computation on multiple inputs concur-
rently. It is a natural fit for many machine learning applications and algorithms that
accept input data as a batch of independent samples from an underlying distribution.
Representation of these samples via an instance-by-feature matrix naturally suggests
two orthogonal directions for achieving data parallelism. One is partitioning the matrix
rowwise into subsets of instances that are then processed independently (e.g., when
computing the update to the weights for logistic regression). The other is splitting it
columnwise for algorithms that can decouple the computation across features (e.g., for
identifying the split feature in decision tree construction).

The most basic example of data parallelism is encountered in embarrassingly par-
allel algorithms, where the computation is split into concurrent subtasks requiring no
intercommunication, which run independently on separate data subsets. A related sim-
ple implementation of data parallelism occurs within the master—slave communication
model: a master process distributes the data across slave processes that execute the
same computation (see, e.g., Chapters 8 and 16).

Less obvious cases of data parallelism arise in algorithms where instances or fea-
tures are not independent, but there exists a well-defined relational structure between
them that can be represented as a graph. Data parallelism can then be achieved if the
computation can be partitioned across instances based on this structure. Then, concur-
rent execution on different partitions is interlaced with exchange of information across
them; approaches presented in Chapters 10 and 15 rely on this algorithmic pattern.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

1.4 PLATFORM CHOICES AND TRADE-OFFS 7

The foregoing examples illustrate coarse-grained data parallelism over subsets of
instances or features that can be achieved via algorithm design. Fine-grained data paral-
lelism, in contrast, refers to exploiting the capability of modern processor architectures
that allow parallelizing vector and matrix computations in hardware. Standard libraries
such as BLAS and LAPACK!' provide routines that abstract out the execution of basic
vector and matrix operations. Learning algorithms that can be represented as cascades
of such operations can then leverage hardware-supported parallelism by making the
corresponding API calls, dramatically simplifying the algorithms’ implementation.

1.3.2 Task Parallelism

Unlike data parallelism defined by performing the same computation on multiple inputs
simultaneously, task parallelism refers to segmenting the overall algorithm into parts,
some of which can be executed concurrently. Fine-grained task parallelism for numeri-
cal computations can be performed automatically by many modern architectures (e.g.,
via pipelining) but can also be implemented semimanually on certain platforms, such as
GPUgs, potentially resulting in very significant efficiency gains, but requiring in-depth
platform expertise. Coarse-grained task parallelism requires explicit encapsulation of
each task in the algorithm’s implementation as well as a scheduling service, which is
typically provided by a programming framework.

The partitioning of an algorithm into tasks can be represented by a directed acyclic
graph, with nodes corresponding to individual tasks, and edges representing inter-task
dependencies. Dataflow between tasks occurs naturally along the graph edges. A promi-
nent example of such a platform is MapReduce, a programming model for distributed
computation introduced by Dean and Ghemawat (2004), on which several chapters
in this book rely; see Chapter 2 for more details. Additional cross-task communica-
tion can be supported by platforms via point-to-point and broadcast messaging. The
Message Passing Interface (MPI) introduced by Gropp et al. (1994) is an example of
such messaging protocol that is widely supported across many platforms and program-
ming languages. Several chapters in this book rely on it; see Section 4.4 of Chapter 4
for more details. Besides wide availability, MPI’s popularity is due to its flexibility:
it supports both point-to-point and collective communication, with synchronous and
asynchronous mechanisms.

For many algorithms, scaling up can be most efficiently achieved by a mixture of
data and task parallelism. Capability for hybrid parallelism is realized by most modern
platforms: for example, it is exhibited both by the highly distributed DryadLINQ
framework described in Chapter 3 and by computer vision algorithms implemented on
GPUs and customized hardware as described in Chapters 18 and 19.

1.4 Platform Choices and Trade-Offs

Let us briefly summarize the key dimensions along which parallel and distributed plat-
forms can be characterized. The classic taxonomy of parallel architectures proposed

! http://www.netlib.org/blas/ and http://www.netlib.org/lapack/.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

8 1 SCALING UP MACHINE LEARNING: INTRODUCTION

by Flynn (1972) differentiates them by concurrency of algorithm execution (single vs.
multiple instruction) and input processing (single vs. multiple data streams). Further
distinctions can be made based on the configuration of shared memory and the organi-
zation of processing units. Modern parallel architectures are typically based on hybrid
topologies where processing units are organized hierarchically, with multiple layers of
shared memory. For example, GPUs typically have dozens of multiprocessors, each of
which has multiple stream processors organized in “blocks”. Individual blocks have
access to relatively small locally shared memory and a much larger globally shared
memory (with higher latency).

Unlike parallel architectures, distributed computing platforms typically have larger
(physical) distances between processing units, resulting in higher latencies and lower
bandwidth. Furthermore, individual processing units may be heterogeneous, and direct
communication between them may be limited or nonexistent either via shared memory
or via message passing, with the extreme case being one where all dataflow is limited
to task boundaries, as is the case for MapReduce.

The overall variety of parallel and distributed platforms and frameworks that are
now available for machine learning applications may seem overwhelming. How-
ever, the following observations capture the key differentiating aspects between the
platforms:

¢ Parallelism granularity: Employing hardware-specific solutions — GPUs and FPGAs —
allows very fine-grained data and task parallelism, where elementary numerical tasks
(operations on vectors, matrices, and tensors) can be spread across multiple processing
units with very high throughput achieved by pipelining. However, using this capability
requires redefining the entire algorithm as a dataflow of such elementary tasks and
eliminating bottlenecks. Moving up to parallelism across cores and processors in generic
CPUs, the constraints on defining the algorithm as a sequence of finely tuned stages
are relaxed, and parallelism is no longer limited to elementary numeric operations.
With cluster- and datacenter-scale solutions, defining higher-granularity tasks becomes
imperative because of increasing communication costs.

* Degree of algorithm customization: Depending on platform choice, the complex-
ity of algorithm redesign required for enabling concurrency may vary from simply
using a third-party solution for automatic parallelization of an existing imperative
or declarative-style implementation, to having to completely re-create the algorithm,
or even implement it directly in hardware. Generally, implementing learning algo-
rithms on hardware-specific platforms (e.g., GPUs) requires significant expertise,
hardware-aware task configuration, and avoiding certain commonplace software pat-
terns such as branching. In contrast, higher-level parallel and distributed systems allow
using multiple, commonplace programming languages extended by APIs that enable
parallelism.

* Ability to mix programming paradigms: Declarative programming languages are be-
coming increasingly popular for large-scale data manipulation, borrowing from a variety
of predecessors — from functional programming to SQL — to make parallel program-
ming easier by expressing algorithms primarily as a mixture of logic and dataflow.
Such languages are often hybridized with the classic imperative programming to pro-
vide maximum expressiveness. Examples of this trend include Microsoft’s DryadLINQ,

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

1.5 THINKING ABOUT PERFORMANCE 9

Google’s Sawzall and Pregel, and Apache Pig and Hive. Even in applications where
such declarative-style languages are insufficient for expressing the learning algorithms,
they are often used for computing the basic first- and second-order statistics that produce
highly predictive features for many learning tasks.

¢ Dataset scale-out: Applications that process datasets too large to fit in memory com-
monly rely on distributed filesystems or shared-memory clusters. Parallel comput-
ing frameworks that are tightly coupled with distributed dataset storage allow op-
timizing task allocation during scheduling to maximize local dataflows. In contrast,
scheduling in hardware-specific parallelism is decoupled from storage solutions used
for very large datasets and hence requires crafting manual solutions to maximize
throughput.

¢ Offline vs online execution: Distributed platforms typically assume that their user
has higher tolerance for failures and latency compared to hardware-specific solutions.
For example, an algorithm implemented via MapReduce and submitted to a virtual
cluster typically has no guarantees on completion time. In contrast, GPU-based algo-
rithms can assume dedicated use of the platform, which may be preferable for real-time
applications.

Finally, we should note that there is a growing trend for hybridization of the mul-
tiple parallelization levels: for example, it is now possible to rent clusters comprising
multicore nodes with attached GPUs from commercial cloud computing providers.
Given a particular application at hand, the choice of the platform and programming
framework should be guided by the criteria just given to identify an appropriate
solution.

1.5 Thinking about Performance

The term “performance” is deeply ambiguous for parallel learning algorithms, as it
includes both predictive accuracy and computational speed, each of which can be
measured by a number of metrics. The variety of learning problems addressed in the
chapters of this book makes the presented approaches generally incomparable in terms
of predictive performance: the algorithms are designed to optimize different objectives
in different settings. Even in those cases where the same problem is addressed, such as
binary classification or clustering, differences in application domains and evaluation
methodology typically lead to incomparability in accuracy results. As a consequence
of this, it is not possible to provide a meaningful quantitative summary of relative
accuracy across the chapters in the book, although it should be understood in every
case that the authors strove to create effective algorithms.

Classical analysis of algorithms’ complexity is based on O-notation (or its brethren)
to bound and quantify computational costs. This approach meets difficulties with many
machine learning algorithms, as they often include optimization-based termination
conditions for which no formal analysis exists. For example, a typical early stopping
algorithm may terminate when predictive error measured on a holdout test set begins
to rise — something that is difficult to analyze because the core algorithm does not have
access to this test set by design.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-19224-8 - Scaling Up Machine Learning: Parallel and Distributed Approaches
Edited by Ron Bekkerman, Mikhail Bilenko and John Langford

Excerpt

More information

10 1 SCALING UP MACHINE LEARNING: INTRODUCTION

Nevertheless, individual subroutines within learning algorithms do often have clear
computational complexities. When examining algorithms and considering their appli-
cation to a given domain, we suggest asking the following questions:

1. What is the computational complexity of the algorithm or of its subroutine? Is it linear
(i.e., O(input size))? Or superlinear? In general, there is a qualitative difference between
algorithms scaling as O (input size) and others scaling as O (input size®) for o > 2. For
all practical purposes, algorithms with cubic and higher complexities are not applicable
to real-world tasks of the modern scale.

2. What is the bandwidth requirement for the algorithm? This is particularly important for
any algorithm distributed over a cluster of computers, but is also relevant for parallel
algorithms that use shared memory or disk resources. This question comes in two flavors:
What is the aggregate bandwidth used? And what is the maximum bandwidth of any
node? Answers of the form O (input size), O (instances), and O (parameters) can all arise
naturally depending on how the data is organized and the algorithm proceeds. These
answers can have a very substantial impact on running time, as the input dataset may
be, say, 10'* bytes in size, yet have only 10'° examples and 10 parameters.

Key metrics used for analyzing computational performance of parallel algorithms
are speedup, efficiency, and scalability:

* Speedup is the ratio of solution time for the sequential algorithms versus its parallel
counterpart.

* Efficiency measures the ratio of speedup to the number of processors.

* Scalability tracks efficiency as a function of an increasing number of processors.

For reasons explained earlier, these measures can be nontrivial to evaluate analytically
for machine learning algorithms, and generally should be considered in conjunction
with accuracy comparisons. However, these measures are highly informative in empir-
ical studies. From a practical standpoint, given the differences in hardware employed
for parallel and sequential implementations, viewing these metrics as functions of costs
(hardware and implementation) is important for fair comparisons.

Empirical evaluation of computational costs for different algorithms should be ide-
ally performed by comparing them on the same datasets. As with predictive perfor-
mance, this may not be done for the work presented in subsequent chapters, given
the dramatic differences in tasks, application domains, underlying frameworks, and
implementations for the different methods. However, it is possible to consider the

general feature throughput of the methods presented in different chapters, defined as

running time
input size

methods are capable of obtaining high efficiency across the different platforms and

tasks.

. Based on the results reported across chapters, well-designed parallelized

1.6 Organization of the Book

Chapters in this book span a range of computing platforms, learning algorithms, pre-
diction problems, and application domains, describing a variety of parallelization
techniques to scale up machine learning. The book is organized in four parts. The

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521192248
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9780521192248:

