Dynamics and Nonlinear Control of Integrated Process Systems

Presenting a systematic model reduction and hierarchical controller design framework for broad classes of integrated process systems encountered in practice, this book first studies process systems with large material recycle and/or with small purge streams, followed by systems with energy integration. Step-by-step model reduction procedures are developed to derive nonlinear reduced models of the dynamics in each time scale. Hierarchical control architectures, consisting of coordinated levels of control action in different time scales, are proposed for each class of process systems considered in order to enforce stability, tracking performance, and disturbance rejection. Numerous process applications are discussed in detail to illustrate the application of the methods and their potential to improve process operations. Matlab codes are also presented to guide further application of the methods developed and facilitate practical implementations.

Michael Baldea is Assistant Professor in the Department of Chemical Engineering at The University of Texas at Austin. Prior to joining The University of Texas, he held industrial research positions with Praxair Technology Center in Tonawanda, NY and GE Global Research in Niskayuna, NY. He has received several research and service awards, including the Model Based Innovation Prize from Process Systems Enterprise and the Best Referee Award from the Journal of Process Control, and has co-authored over 60 papers and presentations.

Prodromos Daoutidis is Professor in the Department of Chemical Engineering and Materials Science at the University of Minnesota. He also held a position as Professor at the Aristotle University of Thessaloniki in 2004–2006. He is the recipient of several research and teaching awards and recognitions, including the NSF CAREER Award, the Model Based Innovation Prize from Process Systems Enterprise, the Ted Peterson Award of CAST, the George Taylor Career Development Award, the Mc’Knight Land Grant Professorship, the Ray D. Johnson/Mayon Plastics Professorship, and the Shell Chair at the University of Minnesota. He has also been a Humphrey Institute Policy Fellow. He has co-authored two books and 175 refereed papers.
Cambridge Series in Chemical Engineering

Series Editor
Arvind Varma, Purdue University

Editorial Board
Christopher Bowman, University of Colorado
Edward Cussler, University of Minnesota
Chaitan Khosla, Stanford University
Athanassios Z. Panagiotopoulos, Princeton University
Gregory Stephanopoulos, Massachusetts Institute of Technology
Jackie Ying, Institute of Bioengineering and Nanotechnology, Singapore

Books in Series
Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems
Chau, Process Control: A First Course with MATLAB
Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition
Cussler and Moggridge, Chemical Product Design, Second Edition
Denn, Chemical Engineering: An Introduction
Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer
Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction
Fan and Zhu, Principles of Gas–Solid Flows
Fox, Computational Models for Turbulent Reacting Flows
Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport
Mewis and Wagner, Colloidal Suspension Rheology
Morbidelli, Gavrilidis and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes
Noble and Terry, Principles of Chemical Separations with Environmental Applications
Orbey and Sandler, Modeling Vapor–Liquid Equilibria: Cubic Equations of State and their Mixing Rules
Petlyuk, Distillation Theory and its Applications to Optimal Design of Separation Units
Rao and Nott, An Introduction to Granular Flow
Russell, Robinson and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers
Slattery, Advanced Transport Phenomena
Varma, Morbidelli and Wu, Parametric Sensitivity in Chemical Systems
Dynamics and Nonlinear Control of Integrated Process Systems

MICHAEL BALDEA
The University of Texas at Austin

PRODROMOS DAOUTIDIS
University of Minnesota
To our families
Contents

Preface

<table>
<thead>
<tr>
<th>Part I Preliminaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>2 Singular perturbation theory</td>
</tr>
<tr>
<td>2.1 Introduction</td>
</tr>
<tr>
<td>2.2 Properties of ODE systems with small parameters</td>
</tr>
<tr>
<td>2.3 Nonstandard singularly perturbed systems with two time scales</td>
</tr>
<tr>
<td>2.4 Singularly perturbed systems with three or more time scales</td>
</tr>
<tr>
<td>2.5 Control of singularly perturbed systems</td>
</tr>
<tr>
<td>2.6 Synopsis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II Process systems with material integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Process systems with significant material recycling</td>
</tr>
<tr>
<td>3.1 Introduction</td>
</tr>
<tr>
<td>3.2 Modeling of process systems with large recycle streams</td>
</tr>
<tr>
<td>3.3 Model reduction</td>
</tr>
<tr>
<td>3.3.1 Fast dynamics</td>
</tr>
<tr>
<td>3.3.2 Slow dynamics</td>
</tr>
<tr>
<td>3.4 Control of integrated processes with large recycle</td>
</tr>
<tr>
<td>3.4.1 Hierarchical controller design</td>
</tr>
<tr>
<td>3.4.2 Control of the fast dynamics</td>
</tr>
<tr>
<td>3.4.3 Control in the slow time scale</td>
</tr>
<tr>
<td>3.4.4 Cascaded control configurations</td>
</tr>
<tr>
<td>3.5 Case study: control of a reactor–distillation–recycle process</td>
</tr>
<tr>
<td>3.5.1 Process description</td>
</tr>
<tr>
<td>3.5.2 Model reduction and hierarchical controller design</td>
</tr>
<tr>
<td>3.5.3 Simulation results and discussion</td>
</tr>
<tr>
<td>3.6 Synopsis</td>
</tr>
</tbody>
</table>
4 Process systems with purge streams

4.1 Introduction 64
4.2 Motivating examples 65
4.2.1 Processes with light impurities 65
4.2.2 Processes with heavy impurities 67
4.3 Modeling of process systems with recycle and purge 70
4.4 Dynamic analysis and model reduction 73
4.5 Motivating examples (continued) 77
4.5.1 Processes with light impurities 77
4.5.2 Processes with heavy impurities 79
4.6 Further applications 80
4.6.1 Processes with slow secondary reactions 80
4.6.2 An analogy with systems with large recycle 82
4.6.3 Processes with multiple impurities 84
4.7 Control implications 84
4.8 Case study: control of a reactor–condenser process 85
4.8.1 Process description 85
4.8.2 System analysis 86
4.8.3 Controller design 86
4.8.4 Simulation results and discussion 88
4.9 Synopsis 101

5 Dynamics and control of generalized integrated process systems

5.1 Introduction 102
5.2 System description and modeling 102
5.3 Time-scale decomposition and nonlinear model reduction 105
5.3.1 Fast dynamics at the unit level 105
5.3.2 Process-level dynamics 106
5.3.3 Slow dynamics of the impurity levels 108
5.4 Hierarchical controller design 110
5.4.1 Distributed control at the unit level 110
5.4.2 Supervisory control at the process level 110
5.4.3 Control of impurity levels 111
5.4.4 Real-time optimization 111
5.5 Case study: dynamics and control of a reactor–separator process core 112
5.5.1 Process description 112
5.5.2 System analysis 115
5.5.3 Reduced-order modeling 116
5.5.4 Hierarchical control system design 122
5.5.5 Simulation results and discussion 126
5.6 Synopsis 139
Part III Process systems with energy integration

6 Process systems with energy recycling

6.1 Introduction 143
6.2 Dynamics of processes with significant energy recovery 144
6.3 Model reduction 147
6.4 Control implications 151
6.5 Illustrative examples 151
 6.5.1 Cascade of heated tanks 152
 6.5.2 Processes with feed–effluent heat exchange 153
 6.5.3 Energy-integrated distillation 156
6.6 Case study: control of a reactor–FEHE process 159
 6.6.1 Process description 159
 6.6.2 System analysis 161
 6.6.3 Reduced-order modeling 163
 6.6.4 Controller design 169
 6.6.5 Simulation results and discussion 171
6.7 Synopsis 176

7 Process systems with high energy throughput

7.1 Introduction 177
7.2 Modeling of process systems with high energy throughput 177
7.3 Nonlinear model reduction 178
7.4 Control implications 180
7.5 Case study 1: dynamics of high-purity distillation columns 180
 7.5.1 System description 180
 7.5.2 Reduced-order modeling 183
 7.5.3 Control implications 195
 7.5.4 Simulation results and discussion 195
7.6 Case study 2: control of a reactor with an external heat exchanger 201
 7.6.1 Process description 201
 7.6.2 System modeling and model reduction 202
 7.6.3 Control implications and controller implementation 208
 7.6.4 Simulation results and discussion 212
7.7 Synopsis 220

Part IV Appendices

Appendix A Definitions

A.1 Lie derivatives. Involutivity 223
A.2 Order of magnitude 224
A.3 Differential algebraic equations (DAEs) 224
Contents

Appendix B Systems with multiple-time-scale dynamics
229

Appendix C Matlab code
237

References
246

Index
256
Preface

The chemical process industry is an intensely competitive environment, where cost reduction represents a critical factor towards increasing profit margins. Over the last few decades, an ever growing need to lower utility costs and energy consumption, and to improve raw material use, has spurred the development and implementation of increasingly integrated process designs that make extensive use of material recycling and energy recovery.

The significant reduction in capital and operating costs associated with process integration does, however, come at the price of additional operational and control challenges. Research on the control of interconnected process systems and entire chemical plants has been driven both by developments in control and optimization theory, and by shifts in market demands and industry needs. Initial efforts focused on decentralized multi-loop control structures and on including plant-wide considerations in the tuning of PID controllers. The associated benefits dwindled, however, with the rise of modern, tightly integrated processes with strong dynamic coupling between the different process units. More recently, control systems developed within the linear model predictive control (MPC) paradigm have allowed centralized decision making and accounting for economic optimality under operating constraints. In the (petro)chemical industry, MPC remains the established means for regulatory control and plant operation around a given steady state.

The current economic environment is, however, highly dynamic. Economically optimal plant operations thus entail frequent switching among different operating conditions (i.e., different steady states), having different product grades and production rates. Adopting or adapting the existing fully centralized or completely decentralized control designs for enforcing such transitions is neither practical nor effective in the context of integrated processes, where the interactions between the process units become significant and unique dynamic features emerge.

Developed around an extensive body of recent research by the authors, this book provides a new paradigm for the effective control of tightly integrated process systems, by
Preface

- documenting rigorously the dynamic behavior that emerges at the plant level when tight integration through material recycling and energy recovery is employed
- presenting the means for deriving explicit and physically meaningful low-dimensional models of the dominant plant dynamics
- describing a hierarchical controller design framework that discerns and coordinates between regulatory control at the unit level and supervisory, plant-wide control, and enables the design of nonlinear controllers for enforcing plant-wide transitions
- illustrating the application of the theoretical concepts to several integrated processes found in the chemical and energy industries

The chapters strive to balance rigor and practicality. The systematic analysis of generic, prototypical processes that exemplify the process integration structures encountered in practice is emphasized together with the unique dynamic features and control challenges that they present. Illustrative examples and extensive case studies on specific problems support the theoretical developments and provide a practical vista. The text adopts a unique and quintessentially chemical engineering perspective by introducing the concept of a process-level dimensionless number to characterize process integration from both a process design and a process control point of view. We are hopeful that our approach will allow readers to rapidly master the underlying theory and develop extensions to other classes of problems. Implementation details (sample computer codes) are provided in order to further encourage the rapid deployment of practical applications.

The book targets graduate students and researchers interested in dynamics and control, as well as practitioners involved in advanced control in industry. It can serve as a reference text in an advanced process systems engineering or process control course and as a valuable resource for the researcher or practitioner. Written at a basic mathematical level (and largely self-contained from a mathematical point of view), the material assumes some familiarity with process modeling and an elementary background in nonlinear dynamical systems and control.

We are grateful to our colleagues at the Department of Chemical Engineering and Materials Science at Minnesota for maintaining an environment of scientific excellence and collegiality over the years. M.B. is also grateful to the fellow researchers at the Praxair Technology Center in Tonawanda, NY for creating an intellectually stimulating atmosphere. We owe special thanks to Ed Cussler for his advice and encouragement in the initial stages of the writing of this book, the staff at Cambridge University Press for their support and advice, and the National Science Foundation for the support it provided for the research that formed the basis for this book. We also owe a special note of appreciation to Aditya Kumar for his instrumental role in the initial phase of research on this subject, and to Sujit Jogwar, whose recent work further solidified the basic thesis and direction of the book.
This book is dedicated to my parents, with gratitude for their unconditional love and support, and to the memory of my grandparents, who fondly followed my childhood scientific pursuits.

M.B.

I dedicate this book to my wife Aphrodite for her uncompromising pursuit of beauty in all aspects of our life, and to my children Stylianos and Euphrosyne for the immeasurable joy and inspiration they bring.

P.D.