
1 Formulation of the Equations of Motion

The first step in the analysis of any structural vibration problem is the formulation
of the equations of motion. It is an important part of the exercise, since the success of
the analysis is dependent upon the equations of motion being formulated correctly.
This process will be less prone to errors if a routine procedure for formulating the
equations can be established. In this chapter a number of methods will be presented
and discussed.

1.1 Dynamic Equilibrium

The equations of motion of any dynamic system can be written down using Newton’s
second law of motion, which states that ‘the rate of change of momentum of a mass
is equal to the force acting on it’.

Consider a mass, m, which is displaced a distance u(t) when acted upon by a
force f(t), both being functions of time, t, as shown in Figure 1.1, then Newton’s
second law of motion gives

d
dt

(
m

du
dt

)
= f (t) (1.1)

For constant m, which will be assumed throughout this book, equation (1.1) reduces
to

m
d2u
dt2

= f (1.2)

or

mü = f (1.3)

where dots denote differentiation with respect to time.
Equation (1.3) can be rewritten in the form

f − mü = 0 (1.4)

If the term −mü is now regarded as a force, then equation (1.4) represents an equa-
tion of equilibrium, that is, the sum of the forces acting on the mass is equal to
zero. The introduction of this fictitious force, which is referred to as an inertia force,
of magnitude mü, acting in the opposite direction to the acceleration, ü, allows an
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2 Formulation of the Equations of Motion

Figure 1.1. Motion of a single mass.

equation of dynamic equilibrium to be formulated using the concepts of static equi-
librium. This equation of dynamic equilibrium, when rearranged, gives the equation
of motion of the system. This concept is known as d’Alembert’s principle.

EXAMPLE 1.1 Derive the equation of motion of the single mass, spring, damper
system shown in Figure 1.2(a).

The forces acting on the mass consist of the externally applied force f, a
restoring force ku due to the spring, a damping force cu̇ due to the viscous
damper and a fictitious inertia force mü. All act in the directions shown in
Figure 1.2(b). For equilibrium

−mü − cu̇ − ku + f = 0 (1.5)

Rearranging, gives the equation of motion

mü + cu̇ + ku = f (1.6)

The above concepts can be extended to multi-degree of freedom systems. Consider a
system of N masses. The equations of dynamic equilibrium are obtained by equating
the sums of the forces and moments on each mass of the system to zero. This gives

�fj − d
dt

(
mj �̇u j

) = 0 j = 1, 2, . . . , N (1.7)

and

�Lj − d
dt

( �Jj ) = 0 j = 1, 2, . . . , N (1.8)

In these equations �uj is the displacement of the mass mj, �fj is the sum of the applied
forces, �Jj is the angular momentum, and �Lj is the sum of the applied moments. If
the vectors �uj do not represent independent motions, equations (1.7) and (1.8) must
be modified by constraints of the form

g j (�u1, �u2, . . . , �uN) = 0 j = 1, 2, . . . , m (1.9)

where m is the number of constraints. This aspect is discussed in Section 1.5.

EXAMPLE 1.2 Derive the equations of motion of the system shown in Figure 1.3.
The mass m1 has two forces acting on it due to the extension of the two

springs joining it to the masses m2 and m3.

Figure 1.2. Single mass, spring, damper system.
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1.2 Principle of Virtual Displacements 3

Figure 1.3. Multi-mass, spring system.

If the position vectors of m1 and m2 are �V1 and �V2 respectively, then the
unit vector �n1, along the line 2–1 is

�n1 = 1
L1

( �V1 − �V2) (1.10)

where

L1 = abs( �V1 − �V2)

If the displacements of m1 and m2 are denoted by �U1 and �U2 then the exten-
sion, e1, of the spring joining m1 and m2 is given by the scalar product

e1 = ( �U1 − �U2) · �n1 (1.11)

If the stiffness of the spring is k1, then the force, f1, acting on the mass m1

in the direction �n1 is

f1 = −k1e1 = k1( �U2 − �U1) · �n1 (1.12)

Similarly, the force, f3, acting on the mass m1 in the direction �n3 is

f3 = k3( �U3 − �U1) · �n3 (1.13)

where

�n3 = 1
L3

( �V1 − �V3) (1.14)

and

L3 = abs( �V1 − �V3).

The equation of dynamic equilibrium for m1 is therefore

f1�n1 + f3�n3 − m1 �̈U1 = 0 (1.15)

When the components of each of the vectors are substituted in this equation,
two scalar equations will be obtained. These can then be rearranged, in the
manner shown in Example 1.1, to give the equations of motion of the mass m1.
The equations of motion of the masses m2 and m3 are obtained in a similar way.

1.2 Principle of Virtual Displacements

If the structure to be analysed is a complex one, then the vectoral addition of all the
forces acting at each mass point is difficult. This difficulty may be overcome by first
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4 Formulation of the Equations of Motion

using d’Alembert’s principle and then the principle of virtual displacements. By this
means the equations of dynamic equilibrium and hence the equations of motion, are
formulated indirectly.

The principle of virtual displacements states that ‘if a system, which is in equi-
librium under the action of a set of forces, is subjected to a virtual displacement,
then the total work done by the forces will be zero’. In this context, a virtual dis-
placement is a physically possible one, that is, any displacement which is compatible
with the system constraints.

EXAMPLE 1.3 Use the principle of virtual displacements to derive the equation
of motion of the system shown in Figure 1.2.

Figure 1.2(b) shows the forces acting after the application of d’Alembert’s
principle. If the system is given a virtual displacement δu, then the principle of
virtual displacements gives

−müδu − cu̇δu − kuδu + f δu = 0 (1.16)

Rearranging gives

(−mü − cu̇ − ku + f ) δu = 0 (1.17)

Since δu is arbitrary and non-zero, then

mü + cu̇ + ku = f (1.18)

The advantage of this approach is that the virtual work contributions are scalar
quantities which can be added algebraically.

For a multi-degree of freedom system, the principle of virtual work gives

N∑
j=1

(
�fj − d

dt
(mj �̇u j )

)
· δ�u j +

N∑
j=1

(
�Lj − d

dt
( �J j )

)
· δ �θ j = 0 (1.19)

where the δ�u j are virtual displacements and the δ �θ j virtual rotations. Since each of
these is arbitrary, equations (1.7) and (1.8) must hold.

1.3 Hamilton’s Principle

Although the principle of virtual displacements overcomes the problem of vectorial
addition of forces, virtual work itself is calculated from the scalar product of two
vectors, one representing a force and one a virtual displacement. This disadvantage
can be largely overcome by using Hamilton’s principle to determine the equations
of motion.

Consider a mass, m, which is acted upon by a force, fT, causing a displacement,
u, as shown in Figure 1.4. fT represents the sum of all the applied forces, both con-
servative and non-conservative.

The work done by a conservative force in moving a mass from one point to
another depends only on the position of the two points and is independent of the

Figure 1.4. Motion of a single mass.
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1.3 Hamilton’s Principle 5

Figure 1.5. Path taken by a mass.

path taken between them. The work done by non-conservative forces does depend
upon the path taken between the two points. Non-conservative forces are energy
dissipating forces such as friction forces, or forces imparting energy to the system
such as external forces.

The work done by a conservative force can be obtained from the change in
potential energy. The potential energy V(�r) associated with position �r is defined
as the work done by a conservative force �f in moving a mass from position �r to a
reference position �r0. That is

V(�r) =
∫ �r0

�r
�f · d�r (1.20)

The work done by a conservative force �f in moving a mass from position �r1 to
position �r2, as shown in Figure 1.5, is

W =
∫ �r2

�r1

�f · d�r

=
∫ �r0

�r1

�f · d�r −
∫ �r0

�r2

�f · d�r (1.21)

= −{V(�r2) − V(�r1)}
Since the force is a conservative one, the work done is independent of the path, and
so in Figure 1.5 the path has been chosen to pass through the reference point 0.

Equation (1.21) states that the work done by a conservative force is minus the
change in potential energy. In differential form this is

δW = −δV (1.22)

The type of potential energy which will be considered in this book is the elastic
potential energy, or strain energy U.

Consider a linear elastic spring of stiffness, k, which is stretched by an amount
u. Then the force, f, in the spring in the direction of u is

f = −ku (1.23)

and the potential energy

U =
∫ 0

u
f du = −

∫ 0

u
ku du = 1

2
ku2 (1.24)

Applying the principle of virtual displacements to the system in Figure 1.4 gives

fTδu − müδu = 0 (1.25)
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6 Formulation of the Equations of Motion

Figure 1.6. Variation in the motion of a mass.

where δu is a virtual displacement.

Now fTδu = δW = work done by the forces (1.26)

and

müδu = m
d
dt

(u̇δu) − mu̇δu̇ (1.27)

where it has been assumed that

d
dt

(δu) = δ

(
du
dt

)
= δu̇

Equation (1.27) can be further modified as follows

müδu = m
d
dt

(u̇δu) − δ

(
1
2

mu̇2
)

(1.28)

= m
d
dt

(u̇δu) − δT

where

T = 1
2 mu̇2 (1.29)

represents the kinetic energy of the system.
Substituting equations (1.26) and (1.28) into equation (1.25) gives

δW − m
d
dt

(u̇δu) + δT = 0

or, on rearranging

δT + δW = m
d
dt

(u̇δu) (1.30)

If the position of the mass is known at two instants of time t1 and t2, then its
motion during this interval of time can be represented by a curve, as shown in Fig-
ure 1.6. A slightly different curve or path is obtained if, at any instant, a small vari-
ation in position δu is allowed with no associated change in time; that is δt = 0
(Figure 1.6). The stipulation is made, however, that at times t1 and t2 the two paths
coincide, that is

δu = 0 at t = t1 and t = t2 (1.31)

The problem is to choose the true path from u1 to u2 from all the possible ones.
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1.3 Hamilton’s Principle 7

Multiplying equation (1.30) by dt and integrating between t1 and t2 gives
∫ t2

t1
(δT + δW) dt =

∫ t2

t1
m

d
dt

(u̇δu) dt

(1.32)
= [mu̇δu]t2

t1 = 0

by virtue of equation (1.31). Equation (1.32), therefore, states that
∫ t2

t1
(δT + δW) dt = 0 (1.33)

Separating the forces into conservative and non-conservative forces, gives

δW = δWc + δWnc (1.34)

Using equation (1.22), namely,

δWc = −δV (1.35)

equation (1.34) becomes

δW = −δV + δWnc (1.36)

Substituting equation (1.36) into equation (1.33) gives
∫ t2

t1
(δT − δV + δWnc) dt = 0 (1.37)

or ∫ t2

t1
(δ(T − V) + δWnc) dt = 0 (1.38)

Note that equation (1.37) cannot be written in the form
∫ t2

t1
δ(T − V + Wnc) dt = 0 (1.39)

since a work function Wnc does not exist for non-conservative forces. However, the
virtual work can always be calculated. Equation (1.38) is the mathematical state-
ment of Hamilton’s principle. For a conservative system δWnc = 0. In this case equa-
tion (1.38) shows that the integral of (T – V) along the true time path is stationary. It
can be shown, for the applications considered in this book, that the stationary value
of the integral is a minimum.

The application of this principle leads directly to the equations of motion for
any system. It can be applied to both discrete, multi-degree of freedom systems (as
shown in Appendix 1) and continuous systems (as illustrated in Section 2.11). The
advantage of this formulation is that it uses scalar energy quantities. Vector quan-
tities may only be required in calculating the work done by the non-conservative
forces. As previously stated, the only potential energy of interest in this book is
elastic strain energy U. The form of Hamilton’s principle to be used is therefore

∫ t2

t1
(δ(T − U) + δWnc) dt = 0 (1.40)
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8 Formulation of the Equations of Motion

EXAMPLE 1.4 Use Hamilton’s principle to derive the equations of motion of the
system shown in Figure 1.2.

For this system

T = 1
2 mu̇2

U = 1
2 ku2 (1.41)

δWnc = f δu − cu̇δu

Substituting into equation (1.40) gives∫ t2

t1
δ

(
1
2

mu̇2 − 1
2

ku2
)

dt +
∫ t2

t1
( f δu − cu̇δu) dt = 0 (1.42)

that is ∫ t2

t1
(mu̇δu̇ − kuδu + f δu − cu̇δu) dt = 0 (1.43)

Now

δu̇ = δ

(
du
dt

)
= d

dt
(δu)

Hence integrating the first term by parts gives∫ t2

t1
mu̇δu̇ dt = [mu̇δu]t2

t1 −
∫ t2

t1
müδu dt

(1.44)

= −
∫ t2

t1
müδu dt

by virtue of equation (1.31).
Substituting equation (1.44) into equation (1.43) gives∫ t2

t1
(−mü − cu̇ − ku + f )δu dt = 0 (1.45)

Since δu is arbitrary, equation (1.45) is satisfied only if

mü + cu̇ + ku = f (1.46)

1.4 Lagrange’s Equations

When Hamilton’s principle is applied to discrete systems it can be expressed in a
more convenient form. To illustrate this, consider the system shown in Figure 1.2.
The kinetic and strain energies are given by

T = 1
2 mu̇2 = T(u̇), U = 1

2 ku2 = U(u) (1.47)

and the virtual work done by the non-conservative forces is

δWnc = ( f − cu̇)δu (1.48)

Equation (1.40) therefore becomes∫ t2

t1

(
∂T
∂u̇

δu̇ − ∂U
∂u

δu + ( f − cu̇)δu
)

dt = 0 (1.49)
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1.4 Lagrange’s Equations 9

Integrating the first term by parts gives
∫ t2

t1

∂T
∂u̇

δu̇ dt =
[
∂T
∂u̇

δu
]t2

t1

−
∫ t2

t1

d
dt

(
∂T
∂u̇

)
δu dt

(1.50)

= −
∫ t2

t1

d
dt

(
∂T
∂u̇

)
δu dt

as a consequence of using equation (1.31).
Substituting equation (1.50) into equation (1.49) gives∫ t2

t1

{
− d

dt

(
∂T
∂u̇

)
− ∂U

∂u
+ f − cu̇

}
δu dt = 0 (1.51)

Since δu is arbitrary, then

d
dt

(
∂T
∂u̇

)
+ ∂U

∂u
+ cu̇ = f (1.52)

Introducing a dissipation function, D, which is defined by

D = 1
2 cu̇2 (1.53)

the damping force is given by

cu̇ = ∂ D
∂u̇

(1.54)

The dissipation function represents the instantaneous rate of energy dissipation
which is given by

1
2 × damping force × rate of extension of damper

Substituting the relationship (1.54) into equation (1.52) gives

d
dt

(
∂T
∂u̇

)
+ ∂ D

∂u̇
+ ∂U

∂u
= f (1.55)

Equation (1.55) is Lagrange’s equation for a single degree of freedom system.
Substituting equations (1.47) and (1.53) into equation (1.55) gives

mü + cu̇ + ku = f (1.56)

which is the equation of motion of the system. It can be seen that the term
(d/dt)(∂T/∂u̇) gives the inertia force and ∂U/∂u the restoring force due to the
spring.

In the case of a multi-degree of freedom system, the deformation of which is
described by n independent displacements q1, q2, . . . , qn, then the kinetic energy is a
function of the velocities q̇j (j = 1, 2, . . . , n) only and the strain energy a function of
the displacements qj( j = 1, 2, . . . , n) only, that is

T = T(q̇1, q̇2, . . . , q̇n)
(1.57)

U = U(q1, q2, . . . , qn)

Similarly, the dissipation function is a function of the velocities q̇j , that is

D = D(q̇1, q̇2, . . . , q̇n) (1.58)
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10 Formulation of the Equations of Motion

Figure 1.7. Two degree of freedom mass,
spring, damper system.

Also, the work done by the non-conservative forces can be written in the form (see
Appendix 1)

δWnc =
n∑

j=1

(
Qj − ∂ D

∂q̇j

)
δqj (1.59)

where the Qj are generalised forces.
Lagrange’s equations now take the form

d
dt

(
∂T
∂q̇j

)
+ ∂ D

∂q̇j
+ ∂U

∂qj
= Qj , j = 1, 2, . . . , n (1.60)

These equations are derived in Appendix 1.

EXAMPLE 1.5 Use Lagrange’s equations to derive the equations of motion of
the system shown in Figure 1.7
The kinetic energy is given by

T = 1
2 m1u̇2

1 + 1
2 m2u̇2

2 (1.61)

the dissipation function by

D = 1
2 c1u̇2

1 + 1
2 c2(u̇2 − u̇1)2

(1.62)
= 1

2 (c1 + c2)u̇2
1 − c2u̇1u̇2 + 1

2 c2u̇2
2

and the strain energy by

U = 1
2 k1u2

1 + 1
2 k2(u2 − u1)2

(1.63)
= 1

2 (k1 + k2)u2
1 − k2u1u2 + 1

2 k2u2
2

The virtual work done by the applied force is

δW = f2δu2 (1.64)

Applying Lagrange’s equations (1.60) gives

m1ü1 + (c1 + c2)u̇1 − c2u̇2 + (k1 + k2)u1 − k2u2 = 0
(1.65)

m2ü2 − c2u̇1 + c2u̇2 − k2u1 + k2u2 = f2

The procedure can be made even more systematic, and therefore less prone to
errors, by using matrix notation. The kinetic energy, dissipation function and strain
energy can all be written in the following forms

T = 1
2 {q̇}T[M]{q̇}

D = 1
2 {q̇}T[C]{q̇} (1.66)

U = 1
2 {q}T[K]{q}
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