
DIGITAL NETS AND SEQUENCES

Indispensable for students, invaluable for researchers, this comprehensive treatment
of contemporary quasi–Monte Carlo methods, digital nets and sequences, and
discrepancy theory starts from scratch with detailed explanations of the basic
concepts and then advances to current methods used in research. As deterministic
versions of the Monte Carlo method, quasi–Monte Carlo rules have increased
in popularity, with many fruitful applications in mathematical practice. These
rules require nodes with good uniform distribution properties, and digital nets and
sequences in the sense of Niederreiter are known to be excellent candidates. Besides
the classical theory, the book contains chapters on reproducing kernel Hilbert spaces
and weighted integration, duality theory for digital nets, polynomial lattice rules,
the newest constructions by Niederreiter and Xing and many more. The authors
present an accessible introduction to the subject based mainly on material taught
in undergraduate courses with numerous examples, exercises and illustrations.

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-19159-3 - Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo
Integration
Josef Dick and Friedrich Pillichshammer
Frontmatter
More information

http://www.cambridge.org/9780521191593
http://www.cambridge.org
http://www.cambridge.org


DIGITAL NETS AND SEQUENCES

Discrepancy Theory and Quasi–Monte Carlo Integration

JOSEF DICK
University of New South Wales, Sydney

FRIEDRICH PILLICHSHAMMER
Johannes Kepler Universität Linz

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-19159-3 - Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo
Integration
Josef Dick and Friedrich Pillichshammer
Frontmatter
More information

http://www.cambridge.org/9780521191593
http://www.cambridge.org
http://www.cambridge.org


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521191593

c© J. Dick and F. Pillichshammer 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-19159-3 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,

or will remain, accurate or appropriate.

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-19159-3 - Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo
Integration
Josef Dick and Friedrich Pillichshammer
Frontmatter
More information

http://www.cambridge.org/9780521191593
http://www.cambridge.org
http://www.cambridge.org


To Jingli and Gisi

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-19159-3 - Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo
Integration
Josef Dick and Friedrich Pillichshammer
Frontmatter
More information

http://www.cambridge.org/9780521191593
http://www.cambridge.org
http://www.cambridge.org


Contents

Preface page xi
Notation xv

1 Introduction 1
1.1 The one-dimensional case 1
1.2 The general case 4
Exercises 13

2 Quasi–Monte Carlo integration, discrepancy and reproducing
kernel Hilbert spaces 16
2.1 Quasi–Monte Carlo rules 16
2.2 Numerical integration in one dimension 17
2.3 Reproducing kernel Hilbert spaces 20
2.4 Connections to classical discrepancy theory 29
2.5 Numerical integration in weighted spaces 34
Exercises 42

3 Geometric discrepancy 46
3.1 Uniform distribution modulo one 46
3.2 Discrepancy 55
3.3 General bounds for the discrepancy 67
3.4 Discrepancy of special point sets and sequences 72
3.5 Tractability of discrepancy 88
3.6 Weighted discrepancy 94
Exercises 103

4 Nets and sequences 108
4.1 Motivation, fair intervals 108
4.2 (t, m, s)-nets and their basic properties 117
4.3 (T, s)- and (t, s)-sequences and their basic

properties 130

vii

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-19159-3 - Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo
Integration
Josef Dick and Friedrich Pillichshammer
Frontmatter
More information

http://www.cambridge.org/9780521191593
http://www.cambridge.org
http://www.cambridge.org


viii Contents

4.4 Digital (t, m, s)-nets and digital (T, s)- and (t, s)-sequences 145
Exercises 177

5 Discrepancy estimates and average type results 180
5.1 Discrepancy estimates for (t, m, s)-nets and

(T, s)-sequences 181
5.2 Some discussion about the discrepancy estimates 197
5.3 Discrepancy estimates for digital (t, m, s)-nets and

digital (T, s)-sequences 199
5.4 Average type and metrical results 210
Exercises 231

6 Connections to other discrete objects 234
6.1 Nets and orthogonal squares 234
6.2 Nets and (ordered) orthogonal arrays 239
Exercises 242

7 Duality theory 244
7.1 Fb-linear subspaces 244
7.2 Duality theory for digital nets 248
7.3 Digital nets and linear codes 252
7.4 Duality theory for digital sequences 256
Exercises 261

8 Special constructions of digital nets and sequences 263
8.1 Sobol′, Faure and Niederreiter sequences 263
8.2 Niederreiter–Özbudak nets 268
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Preface

The theory of digital nets and sequences has its roots in uniform distribution mod-
ulo one and in numerical integration using quasi–Monte Carlo (QMC) rules. The
subject can be traced back to several influential works: the notion of uniform distri-
bution to a classical paper by Weyl [265]; the Koksma–Hlawka inequality, which
forms the starting point for analysing QMC methods for numerical integration,
to Koksma [121] in the one-dimensional case and to Hlawka [111] in arbitrary
dimension. Explicit constructions of digital sequences were first introduced by
Sobol′ [253], followed by Faure [68] and Niederreiter [173]. A general principle
of these constructions was introduced by Niederreiter in [172], which now forms
one of the essential pillars of QMC integration and of this book. These early results
are well summarised in references [61, 114, 130, 171 and 177], where much more
information on the history and on earlier discoveries can be found.

Since then, numerical integration based on QMC has been developed into a
comprehensive theory with many new facets. The introduction of reproducing
kernel Hilbert spaces by Hickernell [101] furnished many Koksma–Hlawka-type
inequalities. The worst-case integration error can be expressed directly in terms
of a reproducing kernel, a function which, together with a uniquely defined inner
product, describes a Hilbert space of functions.

Contrary to earlier suppositions, QMC methods are now used for the numerical
integration of functions in hundreds or even thousands of dimensions. The success
of this approach has been described by Sloan and Woźniakowski in [249], where
the concept of weighted spaces was introduced. These weighted spaces nowadays
permeate the literature on high-dimensional numerical integration. The result was
a weighted Koksma–Hlawka inequality which yields weighted quality measures
(called discrepancies) of the quadrature points and the need for the construction
of point sets which are of high quality with respect to this new criterion. This
led to computer search algorithms for suitable quadrature points which were first

xi
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xii Preface

developed for lattice rules [246, 247] and subsequently extended to polynomial
lattice rules [45].

The construction of low-discrepancy point sets and sequences has also undergone
dramatic improvements. The constructions of Sobol′ [253], Faure [68] and Nieder-
reiter [173] have been developed into the prevailing notion of (digital) (t, m, s)-nets
and (t, s)-sequences. The problem of asymptotically optimal constructions in the
context of this theory (i.e. which minimise the quality parameter t) have been devel-
oped by Niederreiter and Xing in [191, 267], with several subsequent extensions.
From a theoretical perspective, the development of a duality theory for digital nets
is interesting, see [189], which gives a general framework for the theory of digital
nets.

Another development has been a partial merging of Monte Carlo (MC) methods,
where the quadrature points are chosen purely at random, with QMC. The aim here
is to introduce a random element into the construction of low-discrepancy points
that, on the one hand, preserves the distribution properties and is, at the same time,
sufficiently random to yield an unbiased estimator (and which also has further useful
properties). Such a method, called scrambling, has been introduced by Owen [206],
and was first analysed in [207, 209]. As a bonus, one can obtain an improved rate
of convergence of O(N−3/2(log N)c) (for some c > 0) using this randomisation.

The topic of improved rates of convergence was further developed first in [104]
for lattice rules, and then in [27] for polynomial lattice rules, using a random
shift and the tent transformation. This method achieves convergence rates of
O(N−2(log N)c) (for some c > 0). The quadrature points which can be used in
this method can be found by computer search.

A general theory of higher order digital nets and sequences has been developed
in [35] for periodic functions, and in [36] for the general case. There, the conver-
gence rate is of O(N−α(log N)c) (for some c > 0), with α > 1 arbitrarily large for
sufficiently smooth functions.

A breakthrough concerning the classical problem of finding an explicit con-
struction of point sets which achieve the optimal rate of convergence of the L2-
discrepancy came from Chen and Skriganov [22]. This problem goes back to the
lower bound on the L2-discrepancy by Roth [228].

The aim of this work is to describe these achievements in the areas of QMC
methods and uniform distribution. The choice and presentation of the topics is
naturally biased towards our, the authors, interests and expertise. Another consid-
eration for such choice of topics concerns the monographs already available, many
of which are cited throughout the book.

In order to give a consistent and comprehensive treatment of the subject, we use
Walsh series analysis throughout the book. In a broader context this has already
featured in [130, 170] and in the context of analysing digital nets in [133, 148].
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Preface xiii

Some authors, especially those concerned with the analysis of the mean-square
worst-case error of scrambled nets, prefer to use Haar wavelets, which were also
used, for instance, by Sobol′ [252, 253].

In the analysis of scrambled nets, no disadvantage seems to arise from replacing
Haar functions with Walsh functions. The locality of Haar functions is offset by
the locality of the Walsh–Dirichlet kernel. As illustration, Owen’s description of
a nested Analysis of Variance (ANOVA) decomposition [207] can also be neatly
described using the Walsh–Dirichlet kernel; see Section 13.2. For where Walsh
functions are seen to be of considerable advantage, see Chapter 14. The Walsh
coefficients of smooth functions exhibit a certain decay which is an essential
ingredient in the theory of higher order digital nets and sequences. This property is
not shared in the same way by Haar coefficients of smooth functions. Furthermore,
the construction of point sets with optimal L2 discrepancy has its origin in the
Walsh series expansion of the characteristic function χ[0,x). This makes Walsh
functions more suited to our endeavour than Haar functions. However, this does
not mean that this is always the case; in future work, researchers should consider
such a choice on a case-by-case basis.

The aim of this book is to provide an introduction to the topics described above as
well as to some others. Parts of a theory which has already appeared elsewhere are
repeated here in order to make the monograph as self-contained as possible. This
is complemented by two appendices, one on Walsh functions and one on algebraic
function fields. The latter is the underlying basis for the constructions of digital
nets and sequences by Niederreiter, Xing and Özbudak described in Chapter 8.

The text is aimed at undergraduate students in mathematics. The exercises at the
end of each chapter make it suitable for an undergraduate or graduate course on
the topic of this book or parts thereof. Such a course may be useful for students
of science, engineering or finance, where QMC methods find their applications.
We hope that it may prove useful for our colleagues as a reference book and an
inspiration for future work. We also hope for an advancement in the area in the
next few decades akin to that which we have seen in the past.

Acknowledgements

The germ of this book goes back many years now to a handwritten manuscript
by Gerhard Larcher that was the basis for the first author’s master’s thesis under
Gerhard’s supervision and which now forms the main part of Chapters 4 and 5.
This manuscript was in fact the first comprehensive introduction to the topic for the
authors. For this and other contributions, we are immensely grateful. Thank you,
Gerhard!

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-19159-3 - Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo
Integration
Josef Dick and Friedrich Pillichshammer
Frontmatter
More information

http://www.cambridge.org/9780521191593
http://www.cambridge.org
http://www.cambridge.org


xiv Preface

The text has also greatly benefited from valuable comments and suggestions by
several colleagues which we would like to mention here: Jan Baldeaux, Johann
Brauchart, Henri Faure, Michael Gnewuch, Stefan Heinrich, Peter Hellekalek,
Roswitha Hofer, Stephen Joe, Peter Kritzer, Gerhard Larcher, Gunther Leobacher,
Harald Niederreiter, Erich Novak, Art Owen, Gottlieb Pirsic, Wolfgang Ch. Schmid,
Ian Sloan, and Henryk Woźniakowski.
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Notation

Note: In the following, we list only symbols that are used in a global context.

Some specific sets and numbers

C Complex numbers.
Fb Finite field with b elements for a prime power b

(if b is a prime, then we identify Fb with Zb). The
elements of Fb (for b not a prime) are sometimes
denoted by 0, 1, . . . , b − 1.

Fb[x], Zb[x] Set of polynomials over Fb or Zb.
Fb((x−1)), Zb((x−1)) Field of formal Laurent series over Fb or Zb.
Gb,m Gb,m = {q ∈ Fb[x] : deg(q) < m}.
i i = √−1.
Is Index set {1, . . . , s}.
N Positive integers.
N0 Non-negative integers.
P Finite point set in [0, 1)s (interpreted in the sense

of the combinatorial notion of ‘multiset’, i.e. a
set in which the multiplicity of elements matters).

Pu Point set in [0, 1)|u| consisting of the points from
P projected to the components given by u ⊆ Is .

R Real numbers.
S Infinite sequence in [0, 1)s .
u, v, . . . Subsets of Is .
ωb ωb = e2π i/b.
|X| Cardinality of a set X.
Xm The m-fold Cartesian product of a set X.

xv
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xvi Notation

(Xm)� The set of m-dimensional column vectors over X.
Z Integers.
Zb Residue class ring modulo b (we identify Zb with

{0, . . . , b − 1} with addition and multiplication
modulo b).

γ Set of non-negative weights, i.e. γ = {γu : u ⊆ Is}.
In the case of product weights, γ = (γi)i≥1 is under-
stood as the sequence of one-dimensional weights.
In this case we set γu = ∏

i∈u γi .

Vectors and matrices

a, b, c, . . . , x, y, z Row vectors over Fb or Zb.
a, b, c, . . . , x, y, z Row vectors over N, N0, Z or R.
a�, b�,. . . Transpose of a vector a, b, . . . in Fb or Zb.
A, B, C, D, . . . m × m or N × N matrices over Fb.
A� Transpose of the matrix A.
C(m) Left upper m × m sub-matrix of a matrix C.
C(m×n) Left upper m × n sub-matrix of a matrix C.
xu For an s-dimensional vector x = (x1, . . . , xs) and

for u ⊆ Is the |u|-dimensional vector consisting of
the components of x whose index belongs to u, i.e.
xu = (xi)i∈u. For example, for x = ( 1

10 ,
1
3 ,

1
5 ,

1
4 ,

1
8 )

∈ [0, 1)5 and u = {2, 3, 5}, we have xu = ( 1
3 ,

1
5 ,

1
8 ).

(xu, w) For w = (w1, . . . , ws), the vector whose ith
component is xi if i ∈ u and wi if i �∈ u.

x · y (or x · y) Usual inner product of the two vectors x and y
(or x and y, respectively).

(xu, 0) For an s-dimensional vector x = (x1, . . . , xs) and
for u ⊆ Is the s-dimensional vector whose ith
component is xi if i ∈ u and 0 if i �∈ u. For example, for
x and u as above, we have (xu, 0) = (0, 1

3 ,
1
5 , 0, 1

8 ).
(xu, 1) Like (xu, 0) with zero replaced by one.

Some specific functions

a Complex conjugate of a complex number a.
A(J, N,P) For a P = {x0, . . . , xN−1}, the number of indices n,

0 ≤ n < N , for which the point xn belongs to J .
A(J, N,S) For S = (xn)n≥0, the number of indices n, 0 ≤ n < N ,

for which the point xn belongs to J .
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Notation xvii

bwalk kth b-adic Walsh function (see Definition A.1).
Bk kth Bernoulli polynomial.
d|n, d � n d divides n (d does not divide n).
DN Extreme discrepancy (see Definition 3.13).
D∗

N Star discrepancy (see Definitions 2.2 and 2.14).
D∗

N,γ Weighted star discrepancy (see Definition 3.59).
E Expectation.
I (f ) Integral of the function f over the s-dimensional unit-

cube with respect to the s-dimensional Lebesgue measure,
i.e. I (f ) = ∫

[0,1]s f (x) dx.
log x Natural logarithm of x.
logb x Base b logarithm of x.
Lq,N Lq-discrepancy (see Definition 3.19).
Lq,N,γ Weighted Lq-discrepancy (see Definition 3.59).
O(f (x)) For f, g : R → R, f ≥ 0, g(x) = O(f (x)) for x → a if

there exist C, δ > 0 such that |g(x)| ≤ Cf (x) for all
x with |x − a| < δ (or x > δ if a = ∞).

Prob Probability.
QN (f ) Quasi–Monte Carlo (QMC) rule for f and an N-element point

set P = {x0, . . . , xN−1}, i.e. QN (f ) = 1
N

∑N−1
n=0 f (xn).

trm(k) trm(k) = (κ0, . . . , κm−1)� for k ∈ N0 with b-adic
expansion k = ∑

j≥0 κjb
j .

trm(k) trm(k) = κ0 + κ1b + · · · + κm−1b
m−1 for k ∈ N0 with

b-adic expansion k = ∑
j≥0 κjb

j .
Var Variance.
{x} Fractional part of a real number x.
�x Integer part of a non-negative real number x, i.e. �x = x − {x}.
�x� The smallest integer larger than or equal to x.
(x)+ x+ = max(x, 0).
|x|1 L1-norm; |x|1 = |x1| + · · · + |xs | if x = (x1, . . . , xs).
|x|∞ Maximum norm; |x|∞ = max1≤i≤s |xi | if x = (x1, . . . , xs).
λs s-dimensional Lebesgue measure (for s = 1 simply λ).
πm(c) Projection of c ∈ FN

b = {(c1, c2, . . .) : c1, c2, . . . ∈ Fb} onto its
first m components.

ϕ Bijection from {0, . . . , b − 1} → Fb.
ϕb b-adic radical inverse function (see Definition 3.10).
ϕ−1 Inverse of the bijection ϕ : {0, . . . , b − 1} → Fb.
χJ (x) Characteristic function of a set J , i.e. χJ (x) = 1 if

x ∈ J and χJ (x) = 0 if x �∈ J .
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