
1 Introduction to Python

1.1 General Information

Quick Overview

This chapter is not a comprehensive manual of Python. Its sole aim is to provide suf-
ficient information to give you a good start if you are unfamiliar with Python. If you
know another computer language, and we assume that you do, it is not difficult to
pick up the rest as you go.

Python is an object-oriented language that was developed in the late 1980s as
a scripting language (the name is derived from the British television show Monty
Python’s Flying Circus). Although Python is not as well known in engineering circles
as some other languages, it has a considerable following in the programming com-
munity – in fact, Python is used by more programmers than Fortran. Python may be
viewed as an emerging language, because it is still being developed and refined. In
the current state, it is an excellent language for developing engineering applications –
Python’s facilities for numerical computation are as good as those of Fortran or
MATLAB.

R©

Python programs are not compiled into machine code, but are run by an in-
terpreter.1 The great advantage of an interpreted language is that programs can be
tested and debugged quickly, allowing the user to concentrate more on the princi-
ples behind the program and less on programming itself. Because there is no need
to compile, link, and execute after each correction, Python programs can be devel-
oped in a much shorter time than equivalent Fortran or C programs. On the negative
side, interpreted programs do not produce stand-alone applications. Thus, a Python
program can be run only on computers that have the Python interpreter installed.

Python has other advantages over mainstream languages that are important in a
learning environment:

• Python is open-source software, which means that it is free; it is included in most
Linux distributions.

1 The Python interpreter also compiles byte code, which helps to speed up execution somewhat.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

2 Introduction to Python

• Python is available for all major operating systems (Linux, Unix, Windows, Mac
OS, etc.). A program written on one system runs without modification on all
systems.

• Python is easier to learn and produces more readable code than do most lan-
guages.

• Python and its extensions are easy to install.

Development of Python was clearly influenced by Java and C++, but there is also
a remarkable similarity to MATLAB (another interpreted language, very popular in
scientific computing). Python implements the usual concepts of object-oriented lan-
guages such as classes, methods, and inheritance. We will not use object-oriented
programming in this text. The only object that we need is the N-dimensional array
available in the NumPy module (the NumPy module is discussed later in this
chapter).

To get an idea of the similarities between MATLAB and Python, let us look at the
codes written in the two languages for solution of simultaneous equations Ax = b by
Gauss elimination. Here is the function written in MATLAB:

function x] = gaussElimin(a,b)

n = length(b);

for k = 1:n-1

for i= k+1:n

if a(i,k) ˜= 0

lam = a(i,k)/a(k,k);

a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n);

b(i)= b(i) - lam*b(k);

end

end

end

for k = n:-1:1

b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);

end

x = b;

The equivalent Python function is:

from numpy import dot

def gaussElimin(a,b):

n = len(b)

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

3 1.2 Core Python

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

The command from numpy import dot instructs the interpreter to load the
function dot (which computes the dot product of two vectors) from the module
numpy. The colon (:) operator, known as the slicing operator in Python, works the
same way it does in MATLAB and Fortran90 – it defines a slice of an array.

The statement for k = 1:n-1 in MATLAB creates a loop that is executed with
k = 1, 2, . . . , n − 1. The same loop appears in Python as for k in range(n-1).
Here the function range(n-1) creates the list [0, 1, . . . , n − 2]; k then loops over the
elements of the list. The differences in the ranges of k reflect the native offsets used
for arrays. In Python, all sequences have zero offset, meaning that the index of the first
element of the sequence is always 0. In contrast, the native offset in MATLAB is 1.

Also note that Python has no end statements to terminate blocks of code (loops,
subroutines, etc.). The body of a block is defined by its indentation; hence indenta-
tion is an integral part of Python syntax.

Like MATLAB, Python is case sensitive. Thus, the names n and N would represent
different objects.

Obtaining Python

The Python interpreter can be downloaded from the Python Language Website
www.python.org. It normally comes with a nice code editor called Idle that allows
you to run programs directly from the editor. For scientific programming, we also
need the NumPy module, which contains various tools for array operations. It is ob-
tainable from the NumPy home page http://numpy.scipy.org/. Both sites also
provide documentation for downloading. If you use Linux, it is very likely that Python
is already installed on your machine (but you must still download NumPy).

You should acquire other printed material to supplement the on-line doc-
umentation. A commendable teaching guide is Python by Chris Fehly (Peachpit
Press, CA, 2002). As a reference, Python Essential Reference by David M. Beazley
(New Riders Publishing, 2001) is recommended. By the time you read this, newer
editions may be available. A useful guide to NumPy is found at http://www.

scipy.org/Numpy Example List.

1.2 Core Python

Variables

In most computer languages the name of a variable represents a value of a given type
stored in a fixed memory location. The value may be changed, but not the type. This

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

4 Introduction to Python

it not so in Python, where variables are typed dynamically. The following interactive
session with the Python interpreter illustrates this (>>> is the Python prompt):

>>> b = 2 # b is integer type

>>> print b

2

>>> b = b*2.0 # Now b is float type

>>> print b

4.0

The assignment b = 2 creates an association between the name b and the in-
teger value 2. The next statement evaluates the expression b*2.0 and associates the
result with b; the original association with the integer 2 is destroyed. Now b refers to
the floating point value 4.0.

The pound sign (#) denotes the beginning of a comment – all characters between
and the end of the line are ignored by the interpreter.

Strings

A string is a sequence of characters enclosed in single or double quotes. Strings are
concatenated with the plus (+) operator, whereas slicing (:) is used to extract a por-
tion of the string. Here is an example:

>>> string1 = ’Press return to exit’

>>> string2 = ’the program’

>>> print string1 + ’ ’ + string2 # Concatenation

Press return to exit the program

>>> print string1[0:12] # Slicing

Press return

A string is an immutable object – its individual characters cannot be modified
with an assignment statement, and it has a fixed length. An attempt to violate im-
mutability will result in TypeError, as shown here:

>>> s = ’Press return to exit’

>>> s[0] = ’p’

Traceback (most recent call last):

File ’’<pyshell#1>’’, line 1, in ?

s[0] = ’p’

TypeError: object doesn’t support item assignment

Tuples

A tuple is a sequence of arbitrary objects separated by commas and enclosed in
parentheses. If the tuple contains a single object, a final comma is required; for

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

5 1.2 Core Python

example, x = (2,). Tuples support the same operations as strings; they are also im-
mutable. Here is an example where the tuple rec contains another tuple (6,23,68):

>>> rec = (’Smith’,’John’,(6,23,68)) # This is a tuple

>>> lastName,firstName,birthdate = rec # Unpacking the tuple

>>> print firstName

John

>>> birthYear = birthdate[2]

>>> print birthYear

68

>>> name = rec[1] + ’ ’ + rec[0]

>>> print name

John Smith

>>> print rec[0:2]

(’Smith’, ’John’)

Lists

A list is similar to a tuple, but it is mutable, so that its elements and length can be
changed. A list is identified by enclosing it in brackets. Here is a sampling of opera-
tions that can be performed on lists:

>>> a = [1.0, 2.0, 3.0] # Create a list

>>> a.append(4.0) # Append 4.0 to list

>>> print a

[1.0, 2.0, 3.0, 4.0]

>>> a.insert(0,0.0) # Insert 0.0 in position 0

>>> print a

[0.0, 1.0, 2.0, 3.0, 4.0]

>>> print len(a) # Determine length of list

5

>>> a[2:4] = [1.0, 1.0, 1.0] # Modify selected elements

>>> print a

[0.0, 1.0, 1.0, 1.0, 1.0, 4.0]

If a is a mutable object, such as a list, the assignment statement b = a does not
result in a new object b, but simply creates a new reference to a . Thus any changes
made to b will be reflected in a . To create an independent copy of a list a , use the
statement c = a[:], as shown here:

>>> a = [1.0, 2.0, 3.0]

>>> b = a # ’b’ is an alias of ’a’

>>> b[0] = 5.0 # Change ’b’

>>> print a

[5.0, 2.0, 3.0] # The change is reflected in ’a’

>>> c = a[:] # ’c’ is an independent copy of ’a’

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

6 Introduction to Python

>>> c[0] = 1.0 # Change ’c’

>>> print a

[5.0, 2.0, 3.0] # ’a’ is not affected by the change

Matrices can be represented as nested lists with each row being an element of
the list. Here is a 3 × 3 matrix a in the form of a list:

>>> a = [[1, 2, 3], \

[4, 5, 6], \

[7, 8, 9]]

>>> print a[1] # Print second row (element 1)

[4, 5, 6]

>>> print a[1][2] # Print third element of second row

6

The backslash (\) is Python’s continuation character. Recall that Python se-
quences have zero offset, so that a[0] represents the first row, a[1] the second row,
and so forth. With very few exceptions, we do not use lists for numerical arrays. It
is much more convenient to employ array objects provided by the NumPy module.
Array objects are discussed later.

Arithmetic Operators

Python supports the usual arithmetic operators:

+ Addition

− Subtraction

∗ Multiplication

/ Division

∗∗ Exponentiation

% Modular division

Some of these operators are also defined for strings and sequences as illustrated
here:

>>> s = ’Hello ’

>>> t = ’to you’

>>> a = [1, 2, 3]

>>> print 3*s # Repetition

Hello Hello Hello

>>> print 3*a # Repetition

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> print a + [4, 5] # Append elements

[1, 2, 3, 4, 5]

>>> print s + t # Concatenation

Hello to you

>>> print 3 + s # This addition makes no sense

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

7 1.2 Core Python

Traceback (most recent call last):

File ’’<pyshell#9>’’, line 1, in ?

print n + s

TypeError: unsupported operand types for +: ’int’ and ’str’

Python 2.0 and later versions also have augmented assignment operators, such as
a+ = b, that are familiar to the users of C. The augmented operators and the equiva-
lent arithmetic expressions are shown in the following table.

a += b a = a + b

a -= b a = a - b

a *= b a = a*b

a /= b a = a/b

a **= b a = a**b

a %= b a = a%b

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These opera-
tors are:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

Numbers of different type (integer, floating point, etc.) are converted to a common
type before the comparison is made. Otherwise, objects of different type are consid-
ered to be unequal. Here are a few examples:

>>> a = 2 # Integer

>>> b = 1.99 # Floating point

>>> c = ’2’ # String

>>> print a > b

1

>>> print a == c

0

>>> print (a > b) and (a != c)

1

>>> print (a > b) or (a == b)

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

8 Introduction to Python

Conditionals

The if construct

if condition:
block

executes a block of statements (which must be indented) if the condition returns true.
If the condition returns false, the block is skipped. The if conditional can be followed
by any number of elif (short for “else if”) constructs

elif condition:
block

which work in the same manner. The else clause

else:

block

can be used to define the block of statements that are to be executed if none of
the if-elif clauses is true. The function sign of a illustrates the use of the
conditionals:

def sign_of_a(a):

if a < 0.0:

sign = ’negative’

elif a > 0.0:

sign = ’positive’

else:

sign = ’zero’

return sign

a = 1.5

print ’a is ’ + sign_of_a(a)

Running the program results in the output

a is positive

Loops

The while construct

while condition:
block

executes a block of (indented) statements if the condition is true. After execution of
the block, the condition is evaluated again. If it is still true, the block is executed

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

9 1.2 Core Python

again. This process is continued until the condition becomes false. The else clause

else:

block

can be used to define the block of statements that are to be executed if the condition
is false. Here is an example that creates the list [1, 1/2, 1/3, . . .]:

nMax = 5

n = 1

a = [] # Create empty list

while n < nMax:

a.append(1.0/n) # Append element to list

n = n + 1

print a

The output of the program is

[1.0, 0.5, 0.33333333333333331, 0.25]

We met the for statement before in Section 1.1. This statement requires a tar-
get and a sequence (usually a list) over which the target loops. The form of the
construct is

for tar get in sequence:
block

You may add an else clause that is executed after the for loop has finished. The
previous program could be written with the for construct as

nMax = 5

a = []

for n in range(1,nMax):

a.append(1.0/n)

print a

Here n is the target and the list [1, 2, . . . , nMax − 1], created by calling the range
function, is the sequence.

Any loop can be terminated by the break statement. If there is an else cause
associated with the loop, it is not executed. The following program, which searches
for a name in a list, illustrates the use of break and else in conjunction with a for

loop:

list = [’Jack’, ’Jill’, ’Tim’, ’Dave’]

name = eval(raw_input(’Type a name: ’)) # Python input prompt

for i in range(len(list)):

if list[i] == name:

print name,’is number’,i + 1,’on the list’

break

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

10 Introduction to Python

else:

print name,’is not on the list’

Here are the results of two searches:

Type a name: ’Tim’

Tim is number 3 on the list

Type a name: ’June’

June is not on the list

The

continue

statement allows us to skip a portion of the statements in an iterative loop. If the
interpreter encounters the continue statement, it immediately returns to the begin-
ning of the loop without executing the statements below continue. The following
example compiles a list of all numbers between 1 and 99 that are divisible by 7.

x = [] # Create an empty list

for i in range(1,100):

if i%7!= 0: continue # If not divisible by 7, skip rest of loop

x.append(i) # Append i to the list

print x

The printout from the program is

[7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]

Type Conversion

If an arithmetic operation involves numbers of mixed types, the numbers are au-
tomatically converted to a common type before the operation is carried out. Type
conversions can also be achieved by the following functions:

int(a) Converts a to integer

long(a) Converts a to long integer

float(a) Converts a to floating point

complex(a) Converts to complex a + 0 j

complex(a,b) Converts to complex a + bj

The foregoing functions also work for converting strings to numbers as long as
the literal in the string represents a valid number. Conversion from a float to an inte-
ger is carried out by truncation, not by rounding off. Here are a few examples:

>>> a = 5

>>> b = -3.6

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-19132-6 - Numerical Methods in Engineering with Python, Second Edition
Jaan Kiusalaas
Excerpt
More information

http://www.cambridge.org/9780521191326
http://www.cambridge.org
http://www.cambridge.org

