
CHAPTER 1

Prologue

1.1 Introduction

The basic constituents of ordinary matter are electrons and atomic nuclei. These
interact with each other with several kinds of forces – electric, magnetic and
gravitational – the most important of which is the electric force. This force
is attractive between oppositely charged particles and repulsive between like-
charged particles. (The electrons have a negative electric charge −e while the
nuclei have a positive charge +Ze, with Z = 1, 2, . . . , 92 in nature.) Thus, the
strength of the attractive electrostatic interaction between electrons and nuclei
is proportional to Ze2, which equals Zα in appropriate units, where α is the
dimensionless fine-structure constant, defined by

α = e2

h̄c
= 7.297 352 538× 10−3 = 1

137.035 999 68
, (1.1.1)

and where c is the speed of light, h̄ = h/2π and h is Planck’s constant.
The basic question that has to be resolved in order to understand the existence

of atoms and the stability of our world is:

Why don’t the point-like electrons fall into the (nearly) point-like nuclei?

This problem of classical mechanics was nicely summarized by Jeans in 1915
[97]:

“Therewould be a very real difficulty in supposing that the (force) law 1/r2 held
down to zero values of r . For the force between two charges at zero distance
would be infinite; we should have charges of opposite sign continually rushing
together and, when once together, no force would be adequate to separate
them . . . Thus the matter in the universe would tend to shrink into nothing or
to diminish indefinitely in size.”
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2 Prologue

A sensitive reader might object to Jeans’ conclusion on the grounds that
the non-zero radius of nuclei would ameliorate the collapse. Such reasoning
is beside the point, however, because the equilibrium separation of charges
observed in nature is not the nuclear diameter (10−13 cm) but rather the atomic
size (10−8 cm) predicted by Schrödinger’s equation. Therefore, as concerns
the problem of understanding stability, in which equilibrium lengths are of the
order of 10−8 cm, there is no loss in supposing that all our particles are point
particles.
To put it differently, why is the energy of an atom with a point-like nucleus

not −∞? The fact that it is not is known as stability of the first kind; a more
precise definition will be given later. The question was successfully answered
by quantum mechanics, whose exciting development in the beginning of the
twentieth century we will not try to relate – except to note that the basic theory
culminated in Schrödinger’s famous equation of 1926 [156]. This equation
explained the new, non-classical, fact that as an electronmoves close to a nucleus
its kinetic energy necessarily increases in such a way that the minimum total
energy (kinetic plus potential) occurs at some positive separation rather than at
zero separation.

This was one of the most important triumphs of quantum mechanics!

Thomson discovered the electron in 1897 [180, 148], and Rutherford [155]
discovered the (essentially) point-like nature of the nucleus in 1911, so it took
15 years from the discovery of the problem to its full solution. But it took almost
three times as long, 41 years from 1926 to 1967, before the second part of the
stability story was solved by Dyson and Lenard [44].
The second part of the story, known as stability of the second kind, is, even

now, rarely told in basic quantum mechanics textbooks and university courses,
but it is just as important. Given the stability of atoms, is it obvious that bulk
matter with a large number N of atoms (say, N = 1023) is also stable in the
sense that the energy and the volume occupied by 2N atoms are twice that of N
atoms? Our everyday physical experience tells us that this additivity property, or
linear law, holds but is it also necessarily a consequence of quantummechanics?
Without this property, the world of ordinary matter, as we know it, would not
exist.
Although physicists largely take this property for granted, there were a few

that thought otherwise. Onsager [145] was perhaps the first to consider this
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1.1 Introduction 3

kind of question, and did so effectively for classical particles with Coulomb
interactions but with the addition of hard cores that prevent particles from
getting too close together. The full question (without hard cores) was addressed
by Fisher and Ruelle in 1966 [66] and they generalized Onsager’s results to
smeared out charges. In 1967 Dyson and Lenard [44] finally succeeded in
showing that stability of the second kind for truly point-like quantum particles
with Coulomb forces holds but, surprisingly, that it need not do so. That is,
the Pauli exclusion principle, which will be discussed in Chapter 3, and which
has no classical counterpart, was essential. Although matter would not collapse
without it, the linear law would not be satisfied, as Dyson showed in 1967 [43].
Consequently, stability of the second kind does not follow from stability of the
first kind! If the electrons and nuclei were all bosons (which are particles that
do not satisfy the exclusion principle), the energy would not satisfy a linear
law but rather decrease like −N7/5; we will return to this astonishing discovery
later.
The Dyson–Lenard proof of stability of the second kind [44] was one of

the most difficult, up to that time, in the mathematical physics literature. A
challenge was to find an essential simplification, and this was done by Lieb and
Thirring in 1975 [134]. They introduced new mathematical inequalities, now
called Lieb–Thirring (LT) inequalities (discussed in Chapter 4), which showed
that a suitably modified version of the 1927 approximate theory of Thomas and
Fermi [179, 62] yielded, in fact, a lower bound to the exact quantum-mechanical
answer. Since it had already been shown, by Lieb and Simon in 1973 [129, 130],
that this Thomas–Fermi theory possessed a linear lower bound to the energy, the
many-body stability of the second kind immediately followed.
TheDyson–Lenard stability resultwas one important ingredient in the solution

to another, but related problem that had been raised many years earlier. Is it true
that the ‘thermodynamic limit’ of the free energy per particle exists for an infinite
system at fixed temperature and density? In other words, given that the energy
per particle of some system is bounded above and below, independent of the size
of the system, how do we know that it does not oscillate as the system’s size
increases? The existence of a limit was resolved affirmatively by Lebowitz and
Lieb in 1969 [103, 116], and we shall give that proof in Chapter 14.
There were further surprises in store, however! The Dyson–Lenard result was

not the end of the story, for it was later realized that there were other sources
of instability that physicists had not seriously thought about. Two, in fact. The
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4 Prologue

eventual solution of these two problems leads to the conclusion that, ultimately,
stability requires more than the Pauli principle. It also requires an upper bound
on both the physical constants α and Zα.1

One of the two new questions considered was this.What effect does Einstein’s
relativistic kinematics have? In this theory the Newtonian kinetic energy of an
electron with massm and momentum p, p2/2m, is replaced by the much weaker√
p2c2 + m2c4 − mc2. So much weaker, in fact, that the simple atom is stable

only if the relevant coupling parameter Zα is not too large! This fact was known
in one form or another for many years – from the introduction of Dirac’s 1928
relativistic quantum mechanics [39], in fact. It was far from obvious, therefore,
that many-body stability would continue to hold even if Zα is kept small (but
fixed, independent of N). Not only was the linear N-dependence in doubt but
also stability of the first kind was unclear. This was resolved by Conlon in 1984
[32], who showed that stability of the second kind holds if α < 10−200 and
Z = 1.
Clearly, Conlon’s result needed improvement and this led to the invention of

interesting new inequalities to simplify and improve his result. We now know
that stability of the second kind holds if and only if both α and Zα are not too
large. The bound on α itself was the new reality, previously unknown in the
physics literature.
Again new inequalities were needed when it was realized that magnetic fields

could also cause instabilities, even for just one atom, if Zα2 is too large. The
understanding of this strange, and totally unforeseen, fact requires the knowl-
edge that the appropriate Schrödinger equation has ‘zero-modes’, as discovered
by Loss and Yau in 1986 [139] (that is, square integrable, time-independent
solutions with zero kinetic energy). But stability of the second kind was still
open until Fefferman showed in 1995 [57, 58] that stability of the second kind
holds if Z = 1 and α is very small. This result was subsequently improved to
robust values of Zα2 and α by Lieb, Loss and Solovej in 1995 [123].
The surprises, in summary, were that stability of the second kind requires

bounds on the fine-structure constant and the nuclear charges. In the relativistic
case, smallness of α and of Zα is necessary, whereas in the non-relativistic case
with magnetic fields, smallness of α and of Zα2 is required.

1 If Z ≥ 1, which it always is in nature, a bound on Zα implies a bound on α, of course. The
point here is that the necessary bound on α is independent of Z, even if Z is arbitrarily small.
In this book we shall not restrict our attention to integer Z.
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1.2 Brief Outline of the Book 5

Given these facts, one can ask if the simultaneous introduction of relativistic
mechanics, magnetic fields, and the quantization of those fields in the man-
ner proposed by M. Planck in 1900 [149], leads to new surprises about the
requirements for stability. The answer, proved by Lieb, Loss, Siedentop and
Solovej [127, 119], is that in at least one version of the problem no new con-
ditions are needed, except for expected adjustments of the allowed bounds for
Zα and α.
While we will visit all these topics in this book, we will not necessarily follow

the historical route. In particular, we will solve the non-relativistic problem
by using the improved inequalities invented to handle the relativistic problem,
without the introduction of Thomas–Fermi theory. The Thomas–Fermi story
is interesting, but no longer essential for our understanding of the stability of
matter. Hence we will mention it, and sketch its application in the stability of
matter problem, but we will not treat it thoroughly, and will not make further
use of it. Some earlier pedagogical reviews are in [108, 115].

1.2 Brief Outline of the Book

An elementary introduction to quantum mechanics is given in Chapter 2. It is a
thumbnail sketch of the relevant parts of the subject for readers who might want
to refresh their memory, and it also serves to fix notation. Readers familiar with
the subject can safely skip the chapter.
Chapter 3 discusses the many-body aspects of quantum mechanics and, in

particular, introduces the concept of stability of matter in Section 3.2. The
chapter also contains several results that will be used repeatedly in the chapters
to follow, like the monotonicity of the ground state energy in the nuclear charges,
and the fact the bosons have the lowest possible ground state energy among all
symmetry classes.
A detailed discussion of Lieb–Thirring inequalities is the subject of

Chapter 4. These inequalities play a crucial role in our understanding of stability
of matter. They concern bounds on the moments of the negative eigenvalues of
Schrödinger type operators, which lead to lower bounds on the kinetic energy of
many-particle systems in terms of the corresponding semiclassical expressions.
This chapter, like Chapters 5 and 6, is purely mathematical and contains analytic
inequalities that will be applied in the following chapters.
Electrostatics is an old subject whose mathematical underpinning goes back

to Newton’s discussion in the Principia [144] of the gravitational force, which
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6 Prologue

behaves in a similar way except for a change of sign from repulsive to attrac-
tive. Nevertheless, new inequalities are essential for understanding many-body
systems, and these are given in Chapters 5 and 6. The latter chapter contains a
proof of the Lieb–Oxford inequality [125], which gives a bound on the indirect
part of the Coulomb electrostatic energy of a quantum system.
Chapter 7 contains a proof of stability of matter of non-relativistic fermionic

particles. This is the same model for which stability was first shown by Dyson
and Lenard [44] in 1967. The three proofs given here are different and very
short given the inequalities derived in Chapters 4–6. As a consequence, matter
is not only stable but also extensive, in the sense that the volume occupied is
proportional to the number of particles. The instability of the same model for
bosons will also be discussed.
The analogous model with relativistic kinematics is discussed in Chapter 8,

and stability for fermions is proved for a certain range of the parameters α

and Zα. Unlike in the non-relativistic case, where the range of values of these
parameters was unconstrained, bounds on these parameters are essential, as
will be shown. The proof of stability in the relativistic case will be an important
ingredient concerning stability of the models discussed in Chapters 9, 10 and 11.
The influence of spin and magnetic fields will be studied in Chapter 9. If

the kinetic energy of the particles is described by the Pauli operator, it becomes
necessary to include the magnetic field energy for stability. Again, bounds on
various parameters become necessary, this time α and Zα2. It turns out that zero
modes of the Pauli operator are a key ingredient in understanding the boundary
between stability and instability.
If the kinetic energy of relativistic particles is described by the Dirac operator,

the question of stability becomes even more subtle. This is the content of Chap-
ter 10. For the Brown–Ravenhall model, where the physically allowed states are
the positive energy states of the free Dirac operator, there is always instability
in the presence of magnetic fields. Stability can be restored by appropriately
modifying the model and choosing as the physically allowed states the ones that
have a positive energy for the Dirac operator with the magnetic field.
The effects of the quantum nature of the electromagnetic field will be inves-

tigated in Chapter 11. The models considered are the same as in Chapters 9
and 10, but now the electromagnetic field will be quantized. These models are
caricatures of quantum electrodynamics. The chapter includes a self-contained
mini-course on the electromagnetic field and its quantization. The stability and
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1.2 Brief Outline of the Book 7

instability results are essentially the same as for the non-quantized field, except
for different bounds on the parameter regime for stability.
How many electrons can an atom or molecule bind? This question will be

addressed in Chapter 12. The reason for including it in a book on stability of
matter is to show that for a lower bound on the ground state energy only the
minimum of the number of nuclei and the number of electrons is relevant. A
large excess charge can not lower the energy.
Once a system becomes large enough so that the gravitational interaction

can not be ignored, stability fails. This can be seen in nature in terms of the
gravitational collapse of stars and the resulting supernovae, or as the upper mass
limit of cold stars. Simple models of this gravitational collapse, as appropriate
for white dwarfs and neutron stars, will be studied in Chapter 13. In particular,
it will be shown how the critical number of particles for collapse depends on
the gravitational constant G, namely G−3/2 for fermions and G−1 for bosons,
respectively.
The first 13 chapters deal essentially with the problem of showing that the

lowest energy of matter is bounded below by a constant times the number of
particles. The final Chapter 14 deals with the question of showing that the
energy is really proportional to the number of particles, i.e., that the energy per
particle has a limit as the particle number goes to infinity. Such a limit exists
not only for the ground state energy, but also for excited states in the sense that
at positive temperature the thermodynamic limit of the free energy per particle
exists.
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CHAPTER 2

Introduction to Elementary
Quantum Mechanics and Stability

of the First Kind

In this second chapter we will review the basic mathematical and physical
facts about quantum mechanics and establish physical units and notation. Those
readers already familiar with the subject can safely jump to the next chapter.
An attempt has been made to make the presentation in this chapter as elemen-

tary as possible, and yet present the basic facts that will be needed later. There
are many beautiful and important topics which will not be touched upon such as
self-adjointness of Schrödinger operators, the general mathematical structure of
quantummechanics and the like. These topics are well described in other works,
e.g., [150].
Much of the following can be done in aEuclidean space of arbitrary dimension,

but in this chapter the dimension of the Euclidean space is taken to be three –
which is the physical case – unless otherwise stated.Wedo this to avoid confusion
and, occasionally, complications that arise in the computation of mathematical
constants. The interested reader can easily generalize what is done here to the
R

d, d > 3 case. Likewise, in the next chapters we mostly consider N particles,
with spatial coordinates in R

3, so that the total spatial dimension is 3N .

2.1 A Brief Review of the Connection Between Classical and
Quantum Mechanics

Considering the range of validity of quantum mechanics, it is not surprising
that its formulation is more complicated and abstract than classical mechanics.
Nevertheless, classical mechanics is a basic ingredient for quantum mechanics.
One still talks about position, momentum and energy which are notions from
Newtonian mechanics.
The connection between these two theories becomes apparent in the semi-

classical limit, akin to passing from wave optics to geometrical optics. In its
Hamiltonian formulation, classical mechanics can be viewed as a problem

8
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2.1 Review of Classical and Quantum Mechanics 9

of geometrical optics. This led Schrödinger to guess the corresponding wave
equation. We refrain from fully explaining the semiclassical limit of quantum
mechanics. For one aspect of this problem, however, the reader is referred to
Chapter 4, Section 4.1.1.
We turn now to classical dynamics itself, in which a point particle is fully

described by giving its position x = (x1, x2, x3) in R
3 and its velocity v =

dx/dt = ẋ in R
3 at any time t , where the dot denotes the derivative with respect

to time.1 Newton’s law of motion says that along any mechanical trajectory its
acceleration v̇ = ẍ satisfies

mẍ = F(x, ẋ, t), (2.1.1)

where F is the force acting on the particle and m is the mass. With F(x, ẋ, t)
given, the expression (2.1.1) is a system of second order differential equations
which together with the initial conditions x(t0) and v(t0) = ẋ(t0) determine x(t)
and thus v(t) for all times. If there are N particles interacting with each other,
then (2.1.1) takes the form

mi ẍi = Fi , i = 1, . . . , N, (2.1.2)

where Fi denotes the sum of all forces acting on the i th particle and xi denotes
the position of the i th particle. As an example, consider the force between two
charged particles, whose respective charges are denoted by Q1 and Q2, namely
the Coulomb force given (in appropriate units, see Section 2.1.7) by

F1 = Q1Q2
x1 − x2

|x1 − x2|3 = −F2. (2.1.3)

If Q1Q2 is positive the force is repulsive and if Q1Q2 is negative the force
is attractive. Formula (2.1.3) can be written in terms of the potential energy
function

V (x1, x2) = Q1Q2

|x1 − x2| , (2.1.4)

noting that

F1 = −∇x1V and F2 = −∇x2V. (2.1.5)

As usual, we denote the gradient by ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3).

1 We follow the physicists’ convention in which vectors are denoted by boldface letters.
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10 Introduction to Quantum Mechanics

2.1.1 Hamiltonian Formulation

Hamilton’s formulation of classical mechanics is the entry to quantum physics.
Hamilton’s equations are

ẋ = ∂H

∂ p
, ṗ = −∂H

∂x
(2.1.6)

where H (x, p) is the Hamilton function and p the canonical momentum of
the particle. Assuming that

F (x) = −∇V (x) (2.1.7)

for some potential V then, in the case that the canonical momentum is given by

p = mv, (2.1.8)

Eq. (2.1.6) with

H = p2

2m
+ V (x) (2.1.9)

yields (2.1.1). The function

T ( p) = p2

2m
(2.1.10)

is called the kinetic energy function. A simple computation using Eq. (2.1.6)
shows that along each mechanical trajectory the function H (x(t), p(t)) is a
constant which we call the energy, E.

2.1.2 Magnetic Fields

Not in all cases is the canonical momentum given by (2.1.8). An example is the
motion of a charged particle of mass m and charge −e in a magnetic field B(x)
in addition to a potential, V (x). The Lorentz force on such a particle located at
x and having velocity v is2

FLorentz = −e

c
v ∧ B(x). (2.1.11)

2 We use the symbol∧ for the vector product onR
3, instead of×, since the latter may be confused

with x.
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